e911 database. Geocarto International, 25(6):443–
452.
Andr
´
es, M. E., Bordenabe, N. E., Chatzikokolakis, K.,
and Palamidessi, C. (2013). Geo-indistinguishability:
differential privacy for location-based systems. In
Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, CCS ’13,
pages 901–914, New York, NY, USA. Association for
Computing Machinery.
Barrat, A., Cattuto, C., Kivel
¨
a, M., Lehmann, S., and
Saram
¨
aki, J. (2020). Effect of manual and digital con-
tact tracing on COVID-19 outbreaks: a study on em-
pirical contact data.
Bay, J., Kek, J., Tan, A., and Hau, C. S. (2020). Bluetrace:
A privacy-preserving protocol for community-driven
contact tracing across borders.
Boulos, M., Curtis, A. J., and AbdelMalik, P. (2009). Mus-
ings on privacy issues in health research involving dis-
aggregate geographic data about individuals. Interna-
tional Journal of Health Geographics, 8(1):46.
Cassa, C. A., Grannis, S. J., Overhage, J. M., and Mandl,
K. D. (2006). A context-sensitive approach to
anonymizing spatial surveillance data: Impact on out-
break detection. Journal of the American Medical In-
formatics Association, 13(2):160–165.
Chan, J., Foster, D., Gollakota, S., Horvitz, E., Jaeger,
J., Kakade, S., Kohno, T., Langford, J., Larson, J.,
Sharma, P., Singanamalla, S., Sunshine, J., and Tes-
saro, S. (2020). Pact: Privacy sensitive protocols and
mechanisms for mobile contact tracing.
Cole, C. (2020). The safety of privacy: Increased privacy
concerns may prevent effective adoption of contact
tracing apps.
Council of European Union (2014). Council regulation
(EU) no 269/2014.
Ghinita, G., Zhao, K., Papadias, D., and Kalnis, P. (2010).
A reciprocal framework for spatial k-anonymity. In-
formation Systems, 35(3):299–314.
Gkoulalas-Divanis, A., Kalnis, P., and Verykios, V. S.
(2010). Providing k-anonymity in location based
services. ACM SIGKDD Explorations Newsletter,
12(1):3–10.
Hassandoust, F., Akhlaghpour, S., and Johnston, A. C.
(2020). Individuals’ privacy concerns and adoption
of contact tracing mobile applications in a pandemic:
A situational privacy calculus perspective. Journal of
the American Medical Informatics Association.
Inc., A. Apple and google partner on covid-19 contact trac-
ing technology.
Jacob, S. and Lawar
´
ee, J. (2020). The adoption of contact
tracing applications of COVID-19 by european gov-
ernments. Policy Design and Practice, pages 1–15.
Jian, S.-W., Cheng, H.-Y., Huang, X.-T., and Liu, D.-P.
(2020). Contact tracing with digital assistance in tai-
wan’s COVID-19 outbreak response. International
Journal of Infectious Diseases, 101:348–352.
Jung, G., Lee, H., Kim, A., and Lee, U. (2020). Too much
information: Assessing privacy risks of contact trace
data disclosure on people with COVID-19 in south ko-
rea. Frontiers in Public Health, 8.
Li, N., Li, T., and Venkatasubramanian, S. (2007).
t-closeness: Privacy beyond k-anonymity and l-
diversity. In 2007 IEEE 23rd International Confer-
ence on Data Engineering, pages 106–115.
Lo, B. and Sim, I. (2020). Ethical framework for assess-
ing manual and digital contact tracing for COVID-19.
Annals of Internal Medicine.
Machanavajjhala, A., Gehrke, J., Kifer, D., and Venkitasub-
ramaniam, M. (2006). L-diversity: privacy beyond k-
anonymity. In 22nd International Conference on Data
Engineering (ICDE’06), pages 24–24.
Martin, M. K., Helm, J., and Patyk, K. A. (2015). An ap-
proach for de-identification of point locations of live-
stock premises for further use in disease spread mod-
eling. Preventive Veterinary Medicine, 120(2):131–
140.
McPherson, K. P. (2020). Application of gaussian skew
to privacy model. https://github.com/PrivateKit/
spatialprivacy. Accessed Feb 22, 2021.
Park, Y. J., Choe, Y. J., Park, O., Park, S. Y., Kim, Y.-
M., Kim, J., Kweon, S., Woo, Y., Gwack, J., Kim,
S. S., Lee, J., Hyun, J., Ryu, B., Jang, Y. S., Kim, H.,
Shin, S. H., Yi, S., Lee, S., Kim, H. K., Lee, H., Jin,
Y., Park, E., Choi, S. W., Kim, M., Song, J., Choi,
S. W., Kim, D., Jeon, B.-H., Yoo, H., and and, E.
K. J. (2020). Contact tracing during coronavirus dis-
ease outbreak, south korea, 2020. Emerging Infectious
Diseases, 26(10):2465–2468.
Rowe, F. (2020). Contact tracing apps and values dilem-
mas: A privacy paradox in a neo-liberal world.
International Journal of Information Management,
55:102178.
Smieszek, T., Castell, S., Barrat, A., Cattuto, C., White,
P. J., and Krause, G. (2016). Contact diaries versus
wearable proximity sensors in measuring contact pat-
terns at a conference: method comparison and partic-
ipants’ attitudes. BMC Infectious Diseases, 16(1).
Stinchcomb, D. (2004). Procedures for geomasking to pro-
tect patient confidentiality.
Sweeney, L. (2002). Achieving k-nonymity Privacy Pro-
tection Using Generalization and Suppression. In-
ternational Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(05):571–588.
Trieu, N., Shehata, K., Saxena, P., Shokri, R., and Song,
D. (2020). Epione: Lightweight contact tracing with
strong privacy.
Vepakomma, P., Pushpita, S. N., and Raskar, R. (2020).
Dams meta-estimation of private sketch data struc-
tures for differentially private contact tracing.
Wirth, F. N., Johns, M., Meurers, T., and Prasser, F.
(2020). Citizen-centered mobile health apps collect-
ing individual-level spatial data for infectious dis-
ease management: Scoping review. JMIR Mhealth
Uhealth, 8(11):e22594.
Yasaka, T. M., Lehrich, B. M., and Sahyouni, R. (2020).
Peer-to-peer contact tracing: Development of a
privacy-preserving smartphone app. JMIR mHealth
and uHealth, 8(4):e18936.
Spatial K-anonymity: A Privacy-preserving Method for COVID-19 Related Geo-spatial Technologies
81