Wang, X., L. Gao, C. Zhang, X. Li, 2012. A multi-objective
genetic algorithm for fuzzy flexible job-shop scheduling
problem. Int. J. Comp. Appl. Technol., 45, pp. 115–125.
Gen, M., R. Cheng, L. Lin, 2008. Network Models and
Optimization: Multiple Objective Genetic Algorithm
Approach", Springer, London.
Gao, J., M. Gen, and L. Sun, 2006. Scheduling jobs and
maintenances in flexible job shop with a hybrid genetic
algorithm. J. Intel. Manuf., 17, 493–507.
Gao, J., L. Sun and M. Gen, 2008. A hybrid genetic and
variable neighborhood descent algorithm for flexible
job shop scheduling problems. Computers &
Operations Res., 35, 2892-2907.
Gen, M., J. Gao, L. Lin, 2009. Multistage-based genetic
algorithm for flexible job-shop scheduling problem. in
Intelligent and Evolutionary Systems 187, Springer,
183–196.
Gao, J., M. Gen, L. Sun and X. Zhao, 2007. A hybrid of
genetic algorithm and bottleneck shifting for
multiobjective flexible job shop scheduling problems,
Computers & Industrial Engineering, 53, 149-162.
Yu, X.J. and M. Gen, 2010: Introduction to Evolutionary
Algorithms, Springer, London.
Azzouz, A., M. Ennigrou and L.B. Said, 2016. Flexible job-
shop scheduling problem with sequence-dependent
setup times using genetic algorithm. Proc. The 18th
Inter. Conf. Enterprise Information Sys., 2:47-53.
Gong, X., Q. Deng, G. Gong, W. Liu, 2018: A memetic
algorithm for multi-objective flexible job-shop problem
with worker flexibility, Inter. J. Production Res., 56(7):
2506-2522.
Chou,, C-W, C-F Chien, M. Gen, 2014. A multiobjective
hybrid genetic algorithm for TFT-LCD module
assembly scheduling. IEEE Trans. Autom. Sci. Eng.,
11(3), 692–705.
Lin, L. and M. Gen, 2018. Hybrid evolutionary
optimization with learning for production scheduling:
state-of-the-art survey on algorithms and applications,
Int. J. of Production Research, 56(1-2): 193–223
Liu, T-K, Y-P Chen and J-H Chou, 2014. Solving
distributed flexible job-shop scheduling problem for a
real-world fastener manufacturer, IEEE Access, 2:1598-
1606.
Lu, P-H, M-C Wu, H. Tan, Y-H Peng and C-F Chen, 2018.
A genetic algorithm embedded with a concise
chromosome representation for distributed and flexible
job-shop scheduling problem, J. Intelligent Manuf.,
29:19-34.
Gao, K., Z. Cao, L. Zhang, Z. Chen, 2019. A review on
swarm intelligence and evolutionary algorithms for
solving flexible job shop scheduling problems,
IEEE/CAA J. Automatica Sinica, 6(4):904-916.
Gu, X., M. Huang, X Liang, 2019. An improved genetic
algorithm with adaptive variable neighborhood search
for FJSP. Algorithms, 12, 243, 1-16.
Hao X.C., L. Lin, M. Gen, C-F Chien, 2014. An effective
Markov network based EDA for flexible job-shop
scheduling problem under uncertainty. Proc. IEEE
Conf. on Automation Science & Eng., 131-136.
Sun, L., L. Lin, H. Li, M. Gen, 2019. Cooperative Co-
Evolution algorithm with an MRF-based decomposition
strategy for stochastic flexible job shop scheduling.
Mathematics, 7, 318, 1-20.
Wang, H-K, C-F Chien, M. Gen, 2015. An algorithm of
multi-subpopulation parameters with hybrid estimation
of distribution for semiconductor scheduling with
constrained waiting time. IEEE Trans. Semicond.
Manuf., 28(3), 353–366.
Jamrus, T., C-F Chien, M. Gen, K. Sethanan, 2018. Hybrid
particle swarm optimization combined with genetic
operators for flexible job-shop scheduling under
uncertain processing time for semiconductor
manufacturing. IEEE Trans. on Semicon. Manuf., 31(1),
32-41.
Kennedy, J., 199. The particle swarm: Social adaptation of
knowledge,” in roc. IEEE Int. Conf. Evol. Comput.,
Indianapolis, IN, USA, 303–308.
Kennedy, J., R. Eberhart, 1995. Particle swarm
optimization,” in Proc. IEEE Int. Conf. Neural Network,
Perth, WA, Australia, 39–43.
Jia, S., Z-H Hu, 2014. Path-relinking Tabu search for the
multi-objective flexible job shop scheduling problem.
Comput. Oper. Res., 47, 11–26.
Ouelhadj, D., S. Petrovic, 2009. A survey of dynamic
scheduling in manufacturing systems. J. Scheduling,
12(4), 417–431.
Wang, Y., H. Liu, F. Wei, T. Zong, X. Li, 2018.
Cooperative coevolution with formula-based variable
grouping for large-scale global optimization. Evol.
Comput., 26, 569–596.
Li, X., X. Yao, 2012. Cooperatively coevolving particle
swarms for large scale optimization. IEEE Trans. Evol.
Comput., 16(2), 210–224.
Hao, X.C., M. Gen, L. Lin and G. Suer, 2017. Bi-criteria
stochastic job-shop scheduling problem. J. Intelligent
Manuf., 28:833–845.
Lu, P-H, M-C Wu, H. Tan, Y-H Peng and C-F Chen, 2018.
A genetic algorithm embedded with a concise
chromosome representation for distributed and flexible
job-shop scheduling problem, J. Intel. Manuf., 29:19-34.
Sun, L., L. Lin, M. Gen, H. Li, 2019. A hybrid cooperative
coevolution algorithm for fuzzy flexible job shop
scheduling. IEEE Trans. on Fuzzy Sys., 27(5): 1008-
1022.
Lin, J., L. Zhu, Z.J. Wang, 2019: A hybrid multi-verse
optimization for the fuzzy flexible job-shop scheduling
problem, Computers & Indus. Eng., 127: 1089-1100.
Gao, D., G.G. Wang, W. Pedrycz, 2020: Solving fuzzy job-
shop scheduling problem using DE algorithm improved
by a selection mechanism, IEEE Trans. on Fuzzy
Systems, 28(12)3265-
Shi, D.L., B.B. Zhang, Y. Li, 2020: A multi-objective
flexible job-shop scheduling model based on fuzzy
theory and immune genetic algorithm, Int. J. Simulation
Modelling, 19(1): 123-133.
Zhu, Z.W., X.H. Zhou, 2020: Flexible job-shop scheduling
problem with job precedence constraints and interval
grey processing time, Comp. & Indus. Eng., 149:
106781.