ACKNOWLEDGEMENTS
This research was sponsored by Slovak Republic
under grants VEGA 1/0159/17 and APVV-19-0220
and by the EU H2020 programme under Contract
no. 952215 (TAILOR).
REFERENCES
Anderson, H. S. and Roth, P. (2018). Ember: an open
dataset for training static pe malware machine learning
models. arXiv preprint arXiv:1804.04637.
Baader, F., Calvanese, D., McGuinness, D., Patel-
Schneider, P., Nardi, D., et al. (2003). The description
logic handbook: Theory, implementation and applica-
tions. Cambridge university press.
Balogh,
ˇ
S. and Moj
ˇ
zi
ˇ
s, J. (2019). New direction for mal-
ware detection using system features. In 2019 10th IEEE
International Conference on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Ap-
plications (IDAACS), volume 1, pages 176–183. IEEE.
Biondi, F., Enescu, M. A., Given-Wilson, T., Legay, A.,
Noureddine, L., and Verma, V. (2019). Effective, ef-
ficient, and robust packing detection and classification.
Computers & Security, 85:436–451.
B
¨
uhmann, L., Lehmann, J., Westphal, P., and Bin, S.
(2018). Dl-learner structured machine learning on se-
mantic web data. In Companion Proceedings of the The
Web Conference 2018, pages 467–471.
Fanizzi, N., d’Amato, C., and Esposito, F. (2008). Dl-
foil concept learning in description logics. In Inter-
national Conference on Inductive Logic Programming,
pages 107–121. Springer.
Hassen, M., Carvalho, M. M., and Chan, P. K. (2017). Mal-
ware classification using static analysis based features.
In 2017 IEEE Symposium Series on Computational In-
telligence (SSCI), pages 1–7. IEEE.
Hua, Y. and Hein, B. (2019). Rapid restart hill climbing
for learning description logic concepts. In International
Conference on Inductive Logic Programming, pages 46–
61. Springer.
´
Incer Romeo,
´
I., Theodorides, M., Afroz, S., and Wagner,
D. (2018). Adversarially robust malware detection using
monotonic classification. In Proceedings of the Fourth
ACM International Workshop on Security and Privacy
Analytics, pages 54–63.
Kilgallon, S., De La Rosa, L., and Cavazos, J. (2017). Im-
proving the effectiveness and efficiency of dynamic mal-
ware analysis with machine learning. In 2017 Resilience
Week (RWS), pages 30–36. IEEE.
Kolosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Gi-
acinto, G., Eckert, C., and Roli, F. (2018). Adversar-
ial malware binaries: Evading deep learning for malware
detection in executables. In 2018 26th European Sig-
nal Processing Conference (EUSIPCO), pages 533–537.
IEEE.
Lehmann, J. (2010). Learning OWL class expressions, vol-
ume 22. IOS Press.
Lehmann, J. and Hitzler, P. (2010). Concept learning in
description logics using refinement operators. Machine
Learning, 78(1-2):203.
Li, B., Roundy, K., Gates, C., and Vorobeychik, Y. (2017).
Large-scale identification of malicious singleton files. In
Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy, pages 227–238.
Marpaung, J. A., Sain, M., and Lee, H.-J. (2012). Sur-
vey on malware evasion techniques: State of the art and
challenges. In 2012 14th International Conference on
Advanced Communication Technology (ICACT), pages
744–749. IEEE.
Mohanta, A. and Saldanha, A. (2020). Code injection, pro-
cess hollowing, and api hooking. In Malware Analysis
and Detection Engineering, pages 267–329. Springer.
Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath,
B. S. (2011). Malware images: visualization and au-
tomatic classification. In Proceedings of the 8th inter-
national symposium on visualization for cyber security,
pages 1–7.
Oyama, Y., Miyashita, T., and Kokubo, H. (2019). Iden-
tifying useful features for malware detection in the em-
ber dataset. In 2019 Seventh International Symposium
on Computing and Networking Workshops (CANDARW),
pages 360–366. IEEE.
Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro,
B., and Nicholas, C. (2017). Malware detection by eating
a whole exe. arXiv preprint arXiv:1710.09435.
Rizzo, G., Fanizzi, N., Lehmann, J., and B
¨
uhmann, L.
(2016). Integrating new refinement operators in termino-
logical decision trees learning. In European Knowledge
Acquisition Workshop, pages 511–526. Springer.
Saad, S., Briguglio, W., and Elmiligi, H. (2019). The curi-
ous case of machine learning in malware detection. arXiv
preprint arXiv:1905.07573.
Sikorski, M. and Honig, A. (2012). Practical malware anal-
ysis: the hands-on guide to dissecting malicious soft-
ware. no starch press.
Smith, M. R., Johnson, N. T., Ingram, J. B., Carbajal, A. J.,
Haus, B. I., Domschot, E., Ramyaa, R., Lamb, C. C.,
Verzi, S. J., and Kegelmeyer, W. P. (2020). Mind the gap:
On bridging the semantic gap between machine learning
and malware analysis. In Proceedings of the 13th ACM
Workshop on Artificial Intelligence and Security, pages
49–60.
Straccia, U. and Mucci, M. (2015). pfoil-dl: Learning
(fuzzy) el concept descriptions from crisp owl data us-
ing a probabilistic ensemble estimation. In Proceedings
of the 30th Annual ACM Symposium on Applied Comput-
ing, pages 345–352.
Suciu, O., Coull, S. E., and Johns, J. (2019). Explor-
ing adversarial examples in malware detection. In 2019
IEEE Security and Privacy Workshops (SPW), pages 8–
14. IEEE.
Tran, A. C., Dietrich, J., Guesgen, H. W., and Marsland,
S. (2012). An approach to parallel class expression
learning. In International Workshop on Rules and Rule
Markup Languages for the Semantic Web, pages 302–
316. Springer.
Experimental Evaluation of Description Logic Concept Learning Algorithms for Static Malware Detection
799