Dimuro, G. P., Fern
´
andez, J., Bedregal, B., Mesiar, R.,
Sanz, J. A., Lucca, G., and Bustince, H. (2020). The
state-of-art of the generalizations of the choquet in-
tegral: From aggregation and pre-aggregation to or-
dered directionally monotone functions. Information
Fusion, 57:27 – 43.
Dimuro, G. P., Lucca, G., Sanz, J. A., Bustince, H., and
Bedregal, B. (2018). Cmin-integral: A choquet-like
aggregation function based on the minimum t-norm
for applications to fuzzy rule-based classification sys-
tems. In Torra, V., Mesiar, R., and Baets, B. D., ed-
itors, Aggregation Functions in Theory and in Prac-
tice, pages 83–95, Cham. Springer International Pub-
lishing.
Grabisch, M., Marichal, J.-L., Mesiar, R., and Pap, E.
(2009). Aggregation Functions. page 480.
Huang, C. and Yoon, K. (1981). Multiple Attribute Deci-
sion Making: Methods and Applications. A State-of-
the-Art Survey. Number 186 in Lecture Notes in Eco-
nomics and Mathematical Systems. Springer, Berlin,
Heidelberg.
Klement, E. P., Mesiar, R., and Pap, E. (2011). Triangu-
lar Norms. Springer, Dordrecht; London. OCLC:
945924583.
Lourenzutti, R., Krohling, R. A., and Reformat, M. Z.
(2017). Choquet based TOPSIS and TODIM for dy-
namic and heterogeneous decision making with crite-
ria interaction. Information Sciences, 408:41–69.
Lucca, G., Dimuro, G. P., Mattos, V., Bedregal, B.,
Bustince, H., and Sanz, J. A. (2015). A family of
Choquet-based non-associative aggregation functions
for application in fuzzy rule-based classification sys-
tems. In 2015 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), pages 1–8, Los Alami-
tos. IEEE.
Lucca, G., Sanz, J. A., Dimuro, G. P., Bedregal, B., Asi-
ain, M. J., Elkano, M., and Bustince, H. (2017a).
CC-integrals: Choquet-like Copula-based aggrega-
tion functions and its application in fuzzy rule-based
classification systems. Knowledge-Based Systems,
119:32–43.
Lucca, G., Sanz, J. A., Dimuro, G. P., Bedregal, B.,
Fern
´
andez, J., and Bustince, H. (2017b). Analyzing
the behavior of a CC-integral in a fuzzy rule-based
classification system. In 2017 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–
6, Los Alamitos. IEEE.
Lucca, G., Sanz, J. A., Dimuro, G. P., Bedregal, B.,
Mesiar, R., Kolesarova, A., and Bustince, H. (2016).
Preaggregation Functions: Construction and an Ap-
plication. IEEE Transactions on Fuzzy Systems,
24(2):260–272.
Mesiar, R. and Stup
ˇ
nanov
´
a, A. (2019). A note on cc-
integral. Fuzzy Sets and Systems, 355:106 – 109.
Theme: Generalized Integrals.
Murofushi, T. and Sugeno, M. (1989). An interpretation
of fuzzy measures and the choquet integral as an inte-
gral with respect to a fuzzy measure. Fuzzy Sets and
Systems, 29(2):201 – 227.
Nelsen, R. B. (2007). An introduction to copulas. Springer
Science & Business Media.
Pereira Dimuro, G., Bedregal, B., Bustince, H., Asi
´
ain,
M. J., and Mesiar, R. (2016). On additive generators
of overlap functions. Fuzzy Sets and Systems, 287:76
– 96. Theme: Aggregation Operations.
Shyur, H.-J. and Shih, H.-S. (2006). A hybrid mcdm
model for strategic vendor selection. Mathematical
and Computer Modelling, 44(7):749 – 761.
Sugeno, M. (1974). Theory of Fuzzy Integrals and its Ap-
plications. PhD thesis, Tokyo Institute of Technology,
Tokyo.
Wang, X.-Z., He, Y.-L., Dong, L.-C., and Zhao, H.-Y.
(2011). Particle swarm optimization for determin-
ing fuzzy measures from data. Information Sciences,
181(19):4230–4252.
Wieczynski, J. C., Dimuro, G. P., Borges, E. N., Santos,
H. S., Lucca, G., Lourenzutti, R., and Bustince, H.
(2020). Generalizing the GMC-RTOPSIS method us-
ing CT-integral pre-aggregation functions. In 2020
IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), pages 1–8, Glasgow.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control,
8(3):338–353.
CC-separation Measure Applied in Business Group Decision Making
461