REFERENCES
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V.,
Mohamed, N. A., and Arshad, H. (2018). State-of-the-
art in artificial neural network applications: A survey.
Heliyon, 4(11):e00938.
Bakator, M. and Radosav, D. (2018). Deep learning and
medical diagnosis: A review of literature. Multimodal
Technologies and Interaction, 2(3).
Chen, T. and Guestrin, C. (2016). XGBoost: A scalable
tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD’16, page
785–794.
Darby, S. C., Ewertz, M., McGale, P., Bennet, A. M., Blom-
Goldman, U., Brønnum, D., Correa, C., Cutter, D.,
Gagliardi, G., Gigante, B., Jensen, M.-B., Nisbet, A.,
Peto, R., Rahimi, K., Taylor, C., and Hall, P. (2013).
Risk of ischemic heart disease in women after radio-
therapy for breast cancer. New England Journal of
Medicine, 368(11):987–998.
DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A.,
Miller, K. D., Goding Sauer, A., Jemal, A., and Siegel,
R. L. (2019). Breast cancer statistics. CA: A Cancer
Journal for Clinicians, 69(6):438–451.
Lee, R., Gimenez, F., Hoogi, A., Miyake, K., Gorovoy, M.,
and Rubin, D. (2017). A curated mammography data
set for use in computer-aided detection and diagnosis
research. Scientific Data, 4:170177.
Li, H., Zhuang, S., ao Li, D., Zhao, J., and Ma, Y. (2019).
Benign and malignant classification of mammogram
images based on deep learning. Biomedical Signal
Processing and Control, 51:347–354.
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi,
F. E. (2017). A survey of deep neural network ar-
chitectures and their applications. Neurocomputing,
234:11–26.
Løberg, M., Lousdal, M. L., Bretthauer, M., and Kalager,
M. (2015). Benefits and harms of mammography
screening. Breast Cancer Research, 17(1):63.
Loyola-Gonz
´
alez, O. (2019). Black-box vs. white-box:
Understanding their advantages and weaknesses from
a practical point of view. IEEE Access, 7:154096–
154113.
Mohamed, A. A., Berg, W. A., Peng, H., Luo, Y., Jankowitz,
R. C., and Wu, S. (2018). A deep learning method for
classifying mammographic breast density categories.
Medical Physics, 45(1):314–321.
Perre, A. C., Alexandre, L. A., and Freire, L. C. (2019).
Lesion classification in mammograms using convolu-
tional neural networks and transfer learning. Com-
puter Methods in Biomechanics and Biomedical En-
gineering: Imaging & Visualization, 7(5-6):550–556.
Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes,
M. P., Shyu, M.-L., Chen, S.-C., and Iyengar, S. S.
(2018). A survey on deep learning: Algorithms, tech-
niques, and applications. ACM Computing Surveys,
51(5):92:1–92:36.
Ribli, D., Horv
´
ath, A., Unger, Z., Pollner, P., and Csabai,
I. (2018). Detecting and classifying lesions in mam-
mograms with deep learning. Scientific Reports,
8(1):4165.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., Berg, A. C., and Fei-Fei, L. (2015). Ima-
geNet Large Scale Visual Recognition Challenge. In
Proceedings of the International Journal of Computer
Vision, IJCV’15, pages 211–252.
Russell, S. and Norvig, P. (2009). Artificial Intelligence: A
Modern Approach. Prentice Hall Press, Upper Saddle
River, NJ, USA, 3rd edition.
Shen, D., Wu, G., and Suk, H.-I. (2017). Deep learning in
medical image analysis. Annual Review of Biomedical
Engineering, 19:221–248.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Sprague, B. L., Conant, E. F., Onega, T., Garcia, M. P., Be-
aber, E. F., Herschorn, S. D., Lehman, C. D., Toste-
son, A. N. A., Lacson, R., Schnall, M. D., Kontos, D.,
Haas, J. S., Weaver, D. L., Barlow, W. E., and Consor-
tium, P. R. O. S. P. R. (2016). Variation in mammo-
graphic breast density assessments among radiologists
in clinical practice: A multicenter observational study.
Annals of Internal Medicine, 165(7):457–464.
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and
Liu, C. (2018). A survey on deep transfer learning.
In K
˚
urkov
´
a, V., Manolopoulos, Y., Hammer, B., Il-
iadis, L., and Maglogiannis, I., editors, Proceedings of
the 27th International Conference on Artificial Neural
Networks and Machine Learning, ICANN’18, pages
270–279.
Vadivel, A. and Surendiran, B. (2013). A fuzzy rule-based
approach for characterization of mammogram masses
into BI-RADS shape categories. Computers in Biol-
ogy and Medicine, 43(4):259 – 267.
Vibha, L., Harshavardhan, G. M., Pranaw, K., Shenoy,
P. D., Venugopal, K. R., and Patnaik, L. M. (2006).
Classification of mammograms using decision trees.
In Proceedings of the 10th International Database En-
gineering and Applications Symposium, IDEAS’06,
pages 263–266.
Wu, N., Geras, K. J., Shen, Y., Su, J., Kim, S. G., Kim,
E., Wolfson, S., Moy, L., and Cho, K. (2018). Breast
density classification with deep convolutional neural
networks. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Process-
ing, ICASSP’18, pages 6682–6686.
Machine Learning Algorithms for Breast Cancer Detection in Mammography Images: A Comparative Study
667