Bobadilla, J., Hernando, A., Ortega, F., and Guti
´
errez, A.
(2012). Collaborative filtering based on significances.
Information Sciences, 185(1):1–17.
Bobadilla, J., Ortega, F., Hernando, A., and Guti
´
errez,
´
A.
(2013). Recommender systems survey. Knowledge-
Based Systems, 46:109–132.
Champiri, Z. D., Shahamiri, S. R., and Salim, S. S. B.
(2015). A systematic review of scholar context-aware
recommender systems. Expert Systems with Applica-
tions, 42(3):1743 – 1758.
Chen, R., Hua, Q., Chang, Y.-S., Wang, B., Zhang, L., and
Kong, X. (2018). A survey of collaborative filtering-
based recommender systems: From traditional meth-
ods to hybrid methods based on social networks. IEEE
Access, 6:64301–64320.
Desrosiers, C. and Karypis, G. (2011). A comprehensive
survey of neighborhood-based recommendation meth-
ods. In Recommender systems handbook, pages 107–
144. Springer, Boston, MA.
Devarakonda, R., Palanisamy, G., Green, J. M., and Wilson,
B. E. (2011). Data sharing and retrieval using oai-
pmh. Earth Science Informatics, 4(1):1–5.
Elbadrawy, A. and Karypis, G. (2016). Domain-aware
grade prediction and top-n course recommendation.
In Proceedings of the 10th ACM Conference on Rec-
ommender Systems, RecSys ’16, page 183–190, New
York, NY, USA. Association for Computing Machin-
ery.
Ge, M., Delgado-Battenfeld, C., and Jannach, D. (2010).
Beyond accuracy: Evaluating recommender systems
by coverage and serendipity. In Proceedings of the
Fourth ACM Conference on Recommender Systems,
RecSys ’10, page 257–260, New York, NY, USA. As-
sociation for Computing Machinery.
Gormley, C. and Tong, Z. (2015). Elasticsearch: the defini-
tive guide: a distributed real-time search and ana-
lytics engine. O’Reilly Media, Inc., Sebastopol, CA,
USA.
Han, E.-H. S. and Karypis, G. (2000). Centroid-based
document classification: Analysis and experimental
results. In European conference on principles of
data mining and knowledge discovery, pages 424–
431, Department of Computer Science / Army HPC
Research CenterUniversity of Minnesota, Minneapo-
lis. Springer.
Hasan, M. A. and Schwartz, D. G. (2018). Recadvisor:
Criteria-based ph.d. supervisor recommendation. In
The 41st International ACM SIGIR Conference on Re-
search & Development in Information Retrieval, SI-
GIR ’18, page 1325–1328, New York, NY, USA. As-
sociation for Computing Machinery.
Husain, O., Salim, N., Alias, R. A., Abdelsalam, S., and
Hassan, A. (2019). Expert finding systems: A sys-
tematic review. Applied Sciences, 9(20):4250.
Karypis, G. (2001). Evaluation of item-based top-n recom-
mendation algorithms. In Proceedings of the Tenth
International Conference on Information and Knowl-
edge Management, CIKM ’01, page 247–254, New
York, NY, USA. ACM.
Krulwich, B. (1997). Lifestyle finder: Intelligent user pro-
filing using large-scale demographic data. AI Maga-
zine, 18(2):37.
Loper, E. and Bird, S. (2002). NLTK: the natural language
toolkit. CoRR, cs.CL/0205028.
Madeira, G., Borges, E. N., Lucca, G., Santos, H., and
Dimuro, G. (2020). A tool for analyzing academic ge-
nealogy. In Filipe, J.,
´
Smiałek, M., Brodsky, A., and
Hammoudi, S., editors, Enterprise Information Sys-
tems, pages 443–456, Cham. Springer International
Publishing.
Manning, C. D., Raghavan, P., and Sch
¨
utze, H. (2008). In-
troduction to information retrieval. Cambridge Uni-
versity Press, Cambridge, England.
Mendonc¸a, F. C., Gasparini., I., Schroeder., R., and Kem-
czinski., A. (2020). Recommender systems based
on scientific publications: A systematic mapping.
In Proceedings of the 22nd International Confer-
ence on Enterprise Information Systems - Volume 1:
ICEIS,, pages 735–742, Set
´
ubal, Portugal. INSTICC,
SciTePress.
O’Mahony, M. P. and Smyth, B. (2007). A recommender
system for on-line course enrolment: An initial study.
In Proceedings of the 2007 ACM Conference on Rec-
ommender Systems, RecSys ’07, page 133–136, New
York, NY, USA. Association for Computing Machin-
ery.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and
´
Edouard
Duchesnay (2011). Scikit-learn: Machine learning
in python. Journal of Machine Learning Research,
12(85):2825–2830.
Ray, S. and Marakas, G. (2007). Selecting a doctoral dis-
sertation supervisor: Analytical hierarchy approach to
the multiple criteria problem. International journal of
doctoral studies, 2(1):23–32.
Ricci, F., Rokach, L., and Shapira, B. (2011). Introduc-
tion to recommender systems handbook. In Rec-
ommender systems handbook, pages 1–35. Springer,
Boston, MA.
Rodrigues, M. W., Brand
˜
ao, W. C., and Z
´
arate, L. E.
(2018). Recommending scientific collaboration from
researchgate. In 7th Brazilian Conference on Intelli-
gent Systems (BRACIS), pages 336–341, New York,
NY, USA. IEEE.
Salter, J. and Antonopoulos, N. (2006). Cinemascreen
recommender agent: combining collaborative and
content-based filtering. IEEE Intelligent Systems,
21(1):35–41.
Salton, G. (1968). Automatic Information Organization and
Retrieval. McGraw Hill Text, New York, NY, USA.
Sugimoto, C. R. (2014). Academic genealogy. In Beyond
bibliometrics: Harnessing multidimensional indica-
tors of scholarly impact, pages 365–380. MIT Press,
Cambridge, MA, USA.
Tibshirani, R., Hastie, T., Narasimhan, B., and Chu,
G. (2002). Diagnosis of multiple cancer types by
shrunken centroids of gene expression. Proceedings
of the National Academy of Sciences, 99(10):6567–
6572.
ICEIS 2021 - 23rd International Conference on Enterprise Information Systems
892