Therefore, from the discussion of this rule, one
realizes the power of analysis that is provided by the
machine learning model. The use of these models
demonstrates the ability to make decisions in the face
of varied process conditions and the correlation
between the most significant variables, allowing
gains with adjustments that drive the optimization of
the expected result of the press.
6 CONCLUSIONS
The results of this work make it possible to speed up
the predictive analysis of the performance of the roller
press, automating the correlation of information from
the various available systems and enabling the
diagnosis of the press performance in real time,
meaning a great advance since currently this
performance needs an analysis laboratory with results
available only in an interval of 4 hours.
In addition, it shows effective results of a
multivariate analysis, contrasting the human limitation
for the evaluation of numerous parameters. Thus, this
work allows the decision making of the technical and
operational team to be strengthened in order to support
the challenge of reducing costs and increasing revenue
and quality of the production process.
The applicability in the industry as well as its
scalability are highly possible, since the possibility of
implantation can be applied and customized for other
existing roller presses, for the other different
equipment in the pelletizing process (such as ball mill,
filters, pelletizing discs and others) and even different
processes, as long as they are evaluated for each need
and peculiarity.
Besides that, the prediction of the process
performance can open a wide discussion and
possibility of study for the prediction of the useful life
of this equipment adopting the various machine
learning techniques.
ACKNOWLEDGEMENTS
This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior -
Brasil (CAPES) – Finance Code 001, the Conselho
Nacional de Desenvolvimento Científico e
Tecnológico (CNPQ), the Fundação De Amparo a
Pesquisa Do Estado De Minas Gerais -
FAPEMIG grant code APQ-01331-18, the Instituto
Tecnológico Vale (ITV), the Universidade Federal de
Ouro Preto (UFOP) and Vale S.A.
REFERENCES
Aldrich, C. (2020). Process Variable Importance Analysis
by Use of Random Forests in a Shapley Regression
Framework. Minerals 10, 5. doi:https://doi.org/
10.3390/min10050420
Barrios, G., Tavares, M., Pérez-Prim, J. (2014). High
pressure grinding rolls simulation using the discrete
element method dynamic coupling interface. Paper
presented at the XXVII International Mineral
Processing Congress, Santiago, Chile.
Campos, T. M., Barrios, G. K. P., Bueno, G., & Tavares, L.
M. (2017). Desafios na modelagem da capacidade e
potência consumida da prensa de rolos. XXVII
Encontro Nacional de Tratamento de Minérios e
Metalurgia Extrativa, 1743-1753.
Campos, T. M. (2018). Modelagem matemática da prensa
de rolos aplicada à cominuição de minério de ferro.
Universidade Federal do Rio de Janeiro,
Hasanzadeh, V., & Farzanegan, A. (2011). Robust HPGR
model calibration using genetic algorithms. Minerals
Engineering, 24, 424-432. doi:10.1016/j.mineng.
2010.12.004.
Naik, A., Samant, L. (2016). Correlation Review of
Classification Algorithm Using Data Mining Tool:
WEKA, Rapidminer, Tanagra, Orange and Knime.
Procedia Computer Science, 85, 662-668. doi:10.1016
Oliveira, R. N. M. d. (2015). Performance analysis of the
HRCTM HPGR in pilot plant. (Master). Universidade
de São Paulo, São Paulo.
Saramak, D., & Kleiv, R. A. (2013). The effect of feed
moisture on the comminution efficiency of HPGR
circuits. Minerals Engineering, 43-44, 105-106.
Shedroff, N. (1999). Information Interaction Design: A
Unified Field Theory in Design. In R. JACOBSON (Ed.),
Information Design (pp. 267-292): The MIT Press.
Silva, L. (2008). Influência da umidade no processo de
pelotização. Faculdade do Centro Leste – UCL.
Tohry, A., Chelgani, S. C., Matin, S. S., & Noormohammadi,
M. (2020). Power-draw prediction by random forest
based on operating parameters for an industrial ball mill.
Advanced Powder Technology,, 31, 967-972.
Tohry, A., Yazdani, S., Hadavandi, E., Mahmudzadeh, E., &
Chelgani, S. C. (2020). Advanced modeling of HPGR
power consumption based on operational parameters by
BNN: A “Conscious-Lab” development. Powder
Technology, 381. doi:10.1016/j.powtec.2020.12.018
Torres, M., & Cassali, A. (2009). A novel approach for the
modelling of high-pressure grinding rolls. Minerals
Engineering, 22, 1137–1146.
Viterbo, J., Boscarioli, C., Bernardini, F., & Teixeira, M.
(2016). Avaliação de Ferramentas de Apoio ao Ensino
de Técnicas de Mineração de Dados em Cursos de
Graduação. In Anais do XXIV Workshop sobre
Educação em Computação, (pp. 11-20). Porto Alegre:
SBC. doi:10.5753/wei.2016.9644.
Vyhmeister, E., Reyes-Bozo, L., Rodriguez-Maecker, R.,
Fúnez-Guerra, C., Cepeda-Vaca, F., & Valdés-
González, H. c. (2019). Modeling and energy-based
model predictive control of high pressure grinding roll.
Minerals Engineering, 134.