International Journal of Computers and Applications,
40(2):88–97.
Blasco, J., Cubero, S., and Molt
´
o, E. (2016). Computer
Vision Technology for Food Quality Evaluation. San
Diego: Academic Press, 2 edition.
C¸ alik, R. C. and Demirci, M. F. (2018). Cifar-10 image
classification with convolutional neural networks for
embedded systems. In 2018 IEEE/ACS 15th Interna-
tional Conference on Computer Systems and Applica-
tions (AICCSA), pages 1–2. IEEE.
CitrusBr (2020). Laranja e suco a fruta.
da Rosa, A. L. (2019). Classificac
˜
ao de imagens de frutas
utilizando aprendizado de m
´
aquina.
Ebrahimi, M., Khoshtaghaza, M., Minaei, S., and Jamshidi,
B. (2017). Vision-based pest detection based on svm
classification method. Computers and Electronics in
Agriculture, 137:52–58.
Fundecitrus (2019). Sete erros no controle da pinta preta.
Gottwald, T. R., Graham, J. H., and Schubert, T. S. (2002).
Citrus canker: the pathogen and its impact. Plant
Health Progress, 3(1):15.
Guazzelli, A., Zeller, M., Lin, W.-C., Williams, G., et al.
(2009). Pmml: An open standard for sharing models.
The R Journal, 1(1):60–65.
Hashemi, S. M. R., Hassanpour, H., Kozegar, E., and Tan,
T. (2020). Cystoscopic image classification based on
combining mlp and ga. International Journal of Non-
linear Analysis and Applications, 11(1):93–105.
Huang, K., Li, S., Kang, X., and Fang, L. (2016). Spectral–
spatial hyperspectral image classification based on
knn. Sensing and Imaging, 17(1):1.
JAI (2020). Prism-based multispectral cameras empower
high speed fruit sorting.
Jaskolka, K., Seiler, J., Beyer, F., and Kaup, A. (2019). A
python-based laboratory course for image and video
signal processing on embedded systems. Heliyon.
Kalluri, S. R. (2018). Fruits fresh and rotten for classifica-
tion apples oranges bananas.
Kumar, M. (2017). Implementing a binary classifier in
python.
LeCun, Y. (2019). 1.1 deep learning hardware: Past,
present, and future. In 2019 IEEE International
Solid-State Circuits Conference-(ISSCC), pages 12–
19. IEEE.
Mathew, A. R. and Anto, P. B. (2017). Tumor detection
and classification of mri brain image using wavelet
transform and svm. In 2017 International Conference
on Signal Processing and Communication (ICSPC),
pages 75–78. IEEE.
Neves, M. F. and Trombin, V. G. (2017). Anu
´
ario da Citri-
cultutura 2017. citrusbr, S
˜
ao Paulo, 1 edition.
Padol, P. B. and Yadav, A. A. (2016). Svm classifier based
grape leaf disease detection. pages 175–179.
Pipatnoraseth, T., Phognsuphap, S., Wiratkapun, C., Tana-
wongsuwan, R., Sajjacholapunt, P., and Shimizu, I.
(2019). Breast microcalcification visualization using
pseudo-color image processing. In 2019 12th Biomed-
ical Engineering International Conference (BME-
iCON), pages 1–5. IEEE.
Puchkov, E. et al. (2016). Image analysis in microbiology:
a review. Journal of Computer and Communications,
4(15):8.
Puchkov, E. and McCarren, M. (2011). Assessment of
the distribution of nucleic acid intercalators in yeast
cells by pseudospectral image analysis. Biophysics,
56(4):651.
Putra, K. T., Hariadi, T. K., Riyadi, S., and Chamim, A.
N. N. (2018). Feature extraction for quality modeling
of malang oranges on an automatic fruit sorting sys-
tem. In 2018 2nd International Conference on Imag-
ing, Signal Processing and Communication (ICISPC),
pages 74–78. IEEE.
Rauf, Tayyab, H., Saleem, B. A., Lali, M. I. U., khan, a.,
Sharif, M., and Bukhari, S. A. C. (2009). A citrus
fruits and leaves dataset for detection and classifica-
tion of citrus diseases through machine learning. 2.
Rong, D., Ying, Y., and Rao, X. (2017). Embedded vision
detection of defective orange by fast adaptive light-
ness correction algorithm. Computers and Electronics
in Agriculture, pages 48–59.
Rotondo, T., Farinella, G. M., Chillemi, A., Ferlito, F., and
Battiato, S. (2018). A digital countryside notebook for
smart agriculture and oranges classification. In ICETE
(1), pages 547–551.
Shankar, K., Zhang, Y., Liu, Y., Wu, L., and Chen, C.-H.
(2020). Hyperparameter tuning deep learning for di-
abetic retinopathy fundus image classification. IEEE
Access.
Silva, C. F. and Siebra, C. A. (2017). An investigation on the
use of convolutional neural network for image classi-
fication in embedded systems. In 2017 IEEE Latin
American Conference on Computational Intelligence
(LA-CCI), pages 1–6. IEEE.
Soini, C. T., Fellah, S., and Abid, M. R. (2019). Green-
ing infection detection (cigid) by computer vision and
deep learning.
Tu, B., Wang, J., Kang, X., Zhang, G., Ou, X., and Guo,
L. (2018). Knn-based representation of superpixels
for hyperspectral image classification. IEEE Journal
of Selected Topics in Applied Earth Observations and
Remote Sensing, 11(11):4032–4047.
USDA APHIS (2018). Citrus greening.
Valarmathie1, P., Sivakrithika, V., and Dinakaran, K.
(2016). Classification of mammogram masses using
selected texture, shape and margin features with mul-
tilayer perceptron classifier.
Wasule, V. and Sonar, P. (2017). Classification of brain mri
using svm and knn classifier. In 2017 Third Interna-
tional Conference on Sensing, Signal Processing and
Security (ICSSS), pages 218–223. IEEE.
Yin, S., Bi, X., Niu, Y., Gu, X., and Xiao, Y. (2017). Hyper-
spectral classification for identifying decayed oranges
infected by fungi. Emirates Journal of Food and Agri-
culture, pages 601–609.
ICEIS 2021 - 23rd International Conference on Enterprise Information Systems
692