Online Reviewing Platforms. In: Brewster, Fitzpatrick
et al. (Hg.) – Proceedings of the 2019 CHI, pp. 1–14.
Ferguson, R., Shum, S.B., 2012. Social learning analytics,
in: Proceedings of the 2nd International Conference on
Learning Analytics and Knowledge - LAK '12. the 2nd
International Conference, Vancouver, British
Columbia, Canada. 29.04.2012 - 02.05.2012. ACM
Press, New York, New York, USA, p. 23.
Gasevic, D., Conole, G., Siemens, G., Long, P., 2011.
LAK11: International Conference on Learning
Analytics and Knowledge. Banff, Canada 27.
Gentrup, S., Lorenz, G., Kristen, C., Kogan, I., 2020. Self-
fulfilling prophecies in the classroom: Teacher
expectations, teacher feedback and student
achievement. Learning and Instruction 66, 101296.
Green, P.E., Krieger, A.M., Wind, Y., 2004. Thirty Years
of Conjoint Analysis: Reflections and Prospects. In:
Eliashberg, J., Wind, Y., Green, P.E. (Eds.) Marketing
Research and Modeling: Progress and Prospects,
vol. 14. Springer US, Boston, MA, pp. 117–139.
Greller, W., Drachsler, H., 2012. Translating learning into
numbers: A generic framework for learning analytics.
Journal of Educational Technology & Society 15, 42–
57.
Grissom, J.A., Redding, C., 2016. Discretion and
Disproportionality. AERA Open 2, 233285841562217.
Hofstede, G., Hofstede, G.J., Minkow, M., 2010. Cultures
and organizations: software of the mind: intercultural
cooperation and its importance for survival. New York:
McGraw-Hill.
Jones, K.M.L., 2019. “Just because you can doesn’t mean
you should”: Practitioner perceptions of learning
analytics ethics. portal: Libraries and the Academy
19(3).
Jones, K.M.L., Rubel, A., LeClere, E., 2020. A matter of
trust: Higher education institutions as information
fiduciaries in an age of educational data mining and
learning analytics. Journal of the Association for
Information Science and Technology 71, 1227–1241.
Kaiser, J., Möller, J., Helm, F., Kunter, M., 2015. Das
Schülerinventar: Welche Schülermerkmale die
Leistungsurteile von Lehrkräften beeinflussen. Z
Erziehungswiss 18, 279–302.
Krantz, D.H., Tversky, A., 1971. Conjoint-measurement
analysis of composition rules in psychology.
Psychological Review 78, 151–169.
Long, D., Magerko, B., 2020. What is AI Literacy?
Competencies and Design Considerations. In:
Bernhaupt, Mueller et al. (Hg.) – Proceedings of the
2020 CHI, pp. 1–16.
Louviere, J.J., Hout, M., 1988. Analyzing decision making:
Metric conjoint analysis. Sage.
Luckin, R., Cukurova, M., 2019. Designing educational
technologies in the age of AI: A learning sciences‐
driven approach. Br J Educ Technol 50, 2824–2838.
Luplow, N., Smidt, W., 2019. Bedeutung von elterlicher
Unterstützung im häuslichen Kontext für den
Schulerfolg am Ende der Grundschule. Z
Erziehungswiss 22, 153–180.
Murphy, K.P., 2012. Machine learning: A probabilistic
perspective.
Nguyen, A., Wandabwa, H., Rasco, A., Le, L.A., 2021. A
Framework for Designing Learning Analytics
Information Systems, in: Proceedings of the 54th
Hawaii International Conference on System Sciences.
Oberst, U., Quintana, M. de, Del Cerro, S., Chamarro, A.,
2020. Recruiters prefer expert recommendations over
digital hiring algorithm: a choice-based conjoint study
in a pre-employment screening scenario. MRR ahead-
of-print.
Oliveira, P.C. de, Cunha, C.J.C.d.A., Nakayama, M.K.,
2016. Learning Management Systems (LMS) and e-
learning management: an integrative review and
research agenda. JISTEM 13, 157–180.
Paulden, T., 2020. A cutting re‐mark. Significance 17, 4–5.
Peña-Ayala, A., 2018. Learning analytics: A glance of
evolution, status, and trends according to a proposed
taxonomy. WIREs Data Mining Knowl Discov 8,
e1243.
Pound, N., Penton-Voak, I.S., Brown, W.M., 2007. Facial
symmetry is positively associated with self-reported
extraversion. Personality and Individual Differences
43, 1572–1582.
Romero, C., Ventura, S., 2013. Data mining in education.
WIREs Data Mining Knowl Discov 3, 12–27.
Roorda, D.L., Koomen, H.M.Y., Spilt, J.L., Oort, F.J.,
2011. The Influence of Affective Teacher–Student
Relationships on Students’ School Engagement and
Achievement. Review of Educational Research 81,
493–529.
Roscher, R., Bohn, B., Duarte, M.F., Garcke, J., 2020.
Explainable Machine Learning for Scientific Insights
and Discoveries. IEEE Access 8, 42200–42216.
Rosenberg, J.M., Staudt Willet, K.B., 2020. Balancing'
privacy and open science in the context of COVID-19:
a response to Ifenthaler & Schumacher (2016).
Educational technology research and development:
ETR & D, 1–5.
Scholes, V., 2016. The ethics of using learning analytics to
categorize students on risk. Educational technology
research and development: ETR & D 64, 939–955.
Shepherd, D.A., Zacharakis, A., 1999. Conjoint analysis: A
new methodological approach for researching the
decision policies of venture capitalists. Venture Capital
1, 197–217.
Siemens, G., Long, P., 2011. Penetrating the fog: Analytics
in learning and education. EDUCAUSE review 46, 30.
Smith, B.I., Chimedza, C., Bührmann, J.H., 2020. Global
and Individual Treatment Effects Using Machine
Learning Methods. Int J Artif Intell Educ 30, 431–458.
Südkamp, A., Kaiser, J., Möller, J., 2012. Accuracy of
teachers' judgments of students' academic achievement:
A meta-analysis. Journal of Educational Psychology
104, 743–762.
Tobisch, A., Dresel, M., 2017. Negatively or positively
biased? Dependencies of teachers’ judgments and
expectations based on students’ ethnic and social
backgrounds. Soc Psychol Educ 20, 731–752.