Edge Intelligence with Deep Learning in Greenhouse Management

Massimiliano Proietti, Federico Bianchi, Federico Bianchi, Andrea Marini, Lorenzo Menculini, Loris Termite, Alberto Garinei, Alberto Garinei, Lorenzo Biondi, Lorenzo Biondi, Marcello Marconi, Marcello Marconi

2021

Abstract

This paper presents a methodology to control greenhouse operations based on deep learning. The proposed methodology employs Artificial Intelligence algorithms working on edge devices, allowing the detection of anomalies in plants growth and greenhouse control equipment, in view of taking possible corrective actions. Edge Intelligence allows the greenhouse to work independently of the network to which it is connected. It also guarantees privacy to the processed data and contributes to fast and efficient decision-making. In this work, a Long-Short Time Memory Encoder-Decoder architecture is used for greenhouse anomaly detection. The best performance is achieved when using one LSTM layer and 64 LSTM units.

Download


Paper Citation


in Harvard Style

Proietti M., Bianchi F., Marini A., Menculini L., Termite L., Garinei A., Biondi L. and Marconi M. (2021). Edge Intelligence with Deep Learning in Greenhouse Management. In Proceedings of the 10th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-512-8, pages 180-187. DOI: 10.5220/0010451701800187


in Bibtex Style

@conference{smartgreens21,
author={Massimiliano Proietti and Federico Bianchi and Andrea Marini and Lorenzo Menculini and Loris Termite and Alberto Garinei and Lorenzo Biondi and Marcello Marconi},
title={Edge Intelligence with Deep Learning in Greenhouse Management},
booktitle={Proceedings of the 10th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},
year={2021},
pages={180-187},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010451701800187},
isbn={978-989-758-512-8},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 10th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - Edge Intelligence with Deep Learning in Greenhouse Management
SN - 978-989-758-512-8
AU - Proietti M.
AU - Bianchi F.
AU - Marini A.
AU - Menculini L.
AU - Termite L.
AU - Garinei A.
AU - Biondi L.
AU - Marconi M.
PY - 2021
SP - 180
EP - 187
DO - 10.5220/0010451701800187