REFERENCES
(2004). The Open Group Base Specifications Issue 6 – IEEE
Std 1003.1, 2004 Edition. The IEEE and The Open
Group.
(2020). How to Choose Your Red Hat Enterprise Linux File
System. [Online] Accessed November 22nd, 2020.
Amirijoo, M., Hansson, J., and Son, S. H. (2006). IEEE
Transactions on Computers, title=Specification and
management of QoS in real-time databases support-
ing imprecise computations, 55(3):304–319.
Anderson, T. and Dahlin, M. (2014). Operating Systems:
Principles and Practice, volume 1: Kernel and Pro-
cesses. Recursive books.
Ara, G., Abeni, L., Cucinotta, T., and Vitucci, C. (2019).
On the use of kernel bypass mechanisms for high-
performance inter-container communications. In High
Performance Computing, pages 1–12. Springer Inter-
national Publishing.
Babu, S. and Widom, J. (2001). Continuous queries over
data streams. SIGMOD Rec., 30(3):109–120.
Baruah, S., Bertogna, M., and Buttazzo, G. (2015). Multi-
processor Scheduling for Real-Time Systems. Springer
Publishing Company, Incorporated.
Basanta-Val, P., Fernández-García, N., Sánchez-Fernández,
L., and Arias-Fisteus, J. (2017). Patterns for
distributed real-time stream processing. IEEE
Transactions on Parallel and Distributed Systems,
28(11):3243–3257.
Bernstein, P. A. and Goodman, N. (1983). Multiversion
concurrency control—theory and algorithms. ACM
Trans. Database Syst., 8(4):465–483.
Bestavros, A., Lin, K.-J., and Son, S. H. (1997). Real-Time
Database Systems: Issues and Applications. Springer
Science+Business Media, LLC.
Buttazzo, G., Lipari, G., Abeni, L., and Caccamo, M.
(2005). Soft real-time systems: Predictability vs. ef-
ficiency. Springer US.
Cucinotta, T., Abeni, L., Marinoni, M., Balsini, A., and Vi-
tucci, C. (2019). Reducing temporal interference in
private clouds through real-time containers. In 2019
IEEE International Conference on Edge Computing
(EDGE), pages 124–131. IEEE.
Garcia-Molina, H. and Salem, K. (1992). Main memory
database systems: an overview. IEEE Transactions on
Knowledge and Data Engineering, 4(6):509–516.
Jing Han, Haihong E, Guan Le, and Jian Du (2011). Sur-
vey on NoSQL database. In 6th International Confer-
ence on Pervasive Computing and Applications, pages
363–366.
Kang, K., Oh, J., and Son, S. H. (2007). Chronos: Feed-
back control of a real database system performance.
In 28th IEEE International Real-Time Systems Sym-
posium (RTSS 2007), pages 267–276.
Kao, B. and Garcia-Molina, H. (1994). An Overview of
Real-Time Database Systems.
Kim, S., Kim, H., Lee, J., and Jeong, J. (2017). Enlighten-
ing the i/o path: A holistic approach for application
performance. In 15th USENIX Conference on File
and Storage Technologies (FAST 17), pages 345–358,
Santa Clara, CA. USENIX Association.
Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg,
C., Mittal, S., Patel, J. M., Ramasamy, K., and Taneja,
S. (2015). Twitter heron: Stream processing at scale.
In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’15, pages 239–250, New York, NY, USA. ACM.
Lettieri, G., Maffione, V., and Rizzo, L. (2017). A survey
of fast packet I/O technologies for Network Function
Virtualization. In Lecture Notes in Computer Science,
pages 579–590. Springer International Publishing.
Li, T., Tang, J., and Xu, J. (2016). Performance model-
ing and predictive scheduling for distributed stream
data processing. IEEE Transactions on Big Data,
2(4):353–364.
Li, Y. and Manoharan, S. (2013). A performance compari-
son of sql and nosql databases. In 2013 IEEE Pacific
Rim Conference on Communications, Computers and
Signal Processing (PACRIM), pages 15–19.
Lindström, J. (2008). Real Time Database Systems, pages
1–13. American Cancer Society.
Malki, M. E., Hamadou, H. B., Malki, N. E., and Kop-
liku, A. (2018). MPT: Suite tools to support per-
formance tuning in noSQL systems. In 20th Inter-
national Conference on Enterprise Information Sys-
tems (ICEIS 2018), volume 1, pages 127–134, Fun-
chal, Madeira, PT. SciTePress.
Navrátil, M., Bailey, L., and Boyle, C. (2020). Red Hat En-
terprise Linux 7 – Performance Tuning Guide – Moni-
toring and optimizing subsystem throughput in RHEL
7. [Online] Accessed November 22nd, 2020.
Ongaro, D. and Ousterhout, J. (2016). In search of an un-
derstandable consensus algorithm (extended version).
Retrieved July, 20:2018.
Palanisamy, S. and SuvithaVani, P. (2020). A survey on
rdbms and nosql databases mysql vs mongodb. In
2020 International Conference on Computer Commu-
nication and Informatics (ICCCI), pages 1–7.
Rubio, F., ., P. V., and Reyes Ch, R. P. (2020). Nosql vs.
sql in big data management: An empirical study. KnE
Engineering, 5(1):40–49.
Sandhu, R. S. (1998). Role-based access control. In Ad-
vances in computers, volume 46, pages 237–286. El-
sevier.
Theeten, B., Bedini, I., Cogan, P., Sala, A., and Cucinotta,
T. (2014). Towards the optimization of a parallel
streaming engine for telco applications. Bell Labs
Technical Journal, 18(4):181–197.
Valente, P. and Avanzini, A. (2015). Evolution of the BFQ
Storage-I/O Scheduler. In 2015 Mobile Systems Tech-
nologies Workshop (MST), pages 15–20.
Wingerath, W., Gessert, F., Friedrich, S., and Ritter, N. (28
Aug. 2016). Real-time stream processing for big data.
it - Information Technology, 58(4):186 – 194.
Wong, C. S., Tan, I., Kumari, R. D., and Wey, F. (2008).
Towards achieving fairness in the linux scheduler.
SIGOPS Oper. Syst. Rev., 42(5):34–43.
CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science
86