IEEE transactions on visualization and computer
graphics, 24(1):298–308.
Boyko, A. and Funkhouser, T. (2014). Cheaper by the
dozen: Group annotation of 3d data. In Proceedings
of the 27th annual ACM symposium on User interface
software and technology, pages 33–42.
Bryan, N. and Mysore, G. (2013). An efficient posterior
regularized latent variable model for interactive sound
source separation. In International Conference on
Machine Learning, pages 208–216.
Burkovski, A., Kessler, W., Heidemann, G., Kobdani, H.,
and Sch
¨
utze, H. (2011). Self organizing maps in nlp:
Exploration of coreference feature space. In Inter-
national Workshop on Self-Organizing Maps, pages
228–237. Springer.
Cakmak, M., Chao, C., and Thomaz, A. L. (2010). De-
signing interactions for robot active learners. IEEE
Transactions on Autonomous Mental Development,
2(2):108–118.
Cheng, T.-Y., Lin, G., Gong, X., Liu, K.-J., and Wu, S.-H.
(2016). Learning user perceived clusters with feature-
level supervision. In NIPS.
Cui, S., Dumitru, C. O., and Datcu, M. (2014). Semantic
annotation in earth observation based on active learn-
ing. International Journal of Image and Data Fusion,
5(2):152–174.
Dasgupta, S., Poulis, S., and Tosh, C. (2019). Interactive
topic modeling with anchor words. Workshop on Hu-
man in the Loop Learning (HILL 2019).
Datta, S. and Adar, E. (2018). Communitydiff: visualiz-
ing community clustering algorithms. ACM Trans-
actions on Knowledge Discovery from Data (TKDD),
12(1):1–34.
De Souza, C. S. (2005). The semiotic engineering of human-
computer interaction. MIT press.
Dudley, J. J. and Kristensson, P. O. (2018). A review of
user interface design for interactive machine learning.
ACM Transactions on Interactive Intelligent Systems
(TiiS), 8(2):1–37.
Fails, J. A. and Olsen Jr, D. R. (2003). Interactive machine
learning. In Proceedings of the 8th international con-
ference on Intelligent user interfaces, pages 39–45.
Fiebrink, R. and Gillies, M. (2018). Introduction to the spe-
cial issue on human-centered machine learning. ACM
Transactions on Interactive Intelligent Systems (TiiS),
8(2):7.
Fogarty, J., Tan, D., Kapoor, A., and Winder, S. (2008).
Cueflik: interactive concept learning in image search.
In Proceedings of the sigchi conference on human fac-
tors in computing systems, pages 29–38.
Geiger, R. S., Yu, K., Yang, Y., Dai, M., Qiu, J., Tang, R.,
and Huang, J. (2020). Garbage in, garbage out? do
machine learning application papers in social comput-
ing report where human-labeled training data comes
from? In Proceedings of the 2020 Conference on Fair-
ness, Accountability, and Transparency, pages 325–
336.
Gillies, M., Fiebrink, R., Tanaka, A., Garcia, J., Bevilac-
qua, F., Heloir, A., Nunnari, F., Mackay, W., Amershi,
S., Lee, B., et al. (2016). Human-centred machine
learning. In Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing
Systems, pages 3558–3565.
Guo, X., Wu, H., Cheng, Y., Rennie, S., Tesauro, G., and
Feris, R. (2018). Dialog-based interactive image re-
trieval. Advances in neural information processing
systems, 31:678–688.
Harvey, N. and Porter, R. (2016). User-driven sampling
strategies in image exploitation. Information Visual-
ization, 15(1):64–74.
Huang, S.-W., Tu, P.-F., Fu, W.-T., and Amanzadeh, M.
(2013). Leveraging the crowd to improve feature-
sentiment analysis of user reviews. In Proceedings of
the 2013 international conference on Intelligent user
interfaces, pages 3–14.
Jain, S., Munukutla, S., and Held, D. (2019). Few-shot point
cloud region annotation with human in the loop. arXiv
preprint arXiv:1906.04409.
Katan, S., Grierson, M., and Fiebrink, R. (2015). Using in-
teractive machine learning to support interface devel-
opment through workshops with disabled people. In
Proceedings of the 33rd annual ACM conference on
human factors in computing systems, pages 251–254.
Kim, B., Glassman, E., Johnson, B., and Shah, J. (2015).
ibcm: Interactive bayesian case model empowering
humans via intuitive interaction.
Kim, B. and Pardo, B. (2018). A human-in-the-loop sys-
tem for sound event detection and annotation. ACM
Transactions on Interactive Intelligent Systems (TiiS),
8(2):1–23.
Kitchenham, B. and Charters, S. (2007). Guidelines for per-
forming systematic literature reviews in software en-
gineering.
Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007). Su-
pervised machine learning: A review of classification
techniques. Emerging artificial intelligence applica-
tions in computer engineering, 160(1):3–24.
MacGlashan, J., Ho, M. K., Loftin, R., Peng, B., Roberts,
D., Taylor, M. E., and Littman, M. L. (2017). Interac-
tive learning from policy-dependent human feedback.
34th International Conference on Machine Learning
(ICML 2017).
Madeyski, L. and Kitchenham, B. (2015). Reproducible
research–what, why and how. Wroclaw University of
Technology, PRE W, 8.
Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018).
Foundations of machine learning. MIT press.
Nadj, M., Knaeble, M., Li, M. X., and Maedche, A. (2020).
Power to the oracle? design principles for interactive
labeling systems in machine learning. KI-K
¨
unstliche
Intelligenz, pages 1–12.
Nalisnik, M., Gutman, D. A., Kong, J., and Cooper, L. A.
(2015). An interactive learning framework for scal-
able classification of pathology images. In 2015 IEEE
International Conference on Big Data (Big Data),
pages 928–935. IEEE.
Nichols, J., Mahmud, J., and Drews, C. (2012). Summa-
rizing sporting events using twitter. In Proceedings of
the 2012 ACM international conference on Intelligent
User Interfaces, pages 189–198.
Plummer, B., Kiapour, H., Zheng, S., and Piramuthu, R.
(2019). Give me a hint! navigating image databases
An Interface Design Catalog for Interactive Labeling Systems
493