Kapenieks, A., Žuga, B., Vītoliņa, I., Kapenieks, K. ... &,
Balode, A. 2014. Piloting the eBig3: A Triple-screen e-
Learning App. Proc. of the 6th International Conference
on Computer Supported Education. pp. 325.-329.
Kuhn, M., & Johnson, K., 2013. Applied predictive model-
ing (Vol. 26). New York: Springer.
Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G.,
2018. Learning under concept drift: A review. IEEE
Transactions on Knowledge and Data Engineering,
31(12), 2346-2363.
Maskey, M. et al., 2019. Machine Learning Lifecycle for
Earth Science Application: A Practical Insight into Pro-
duction Deployment, IGARSS 2019 - 2019 IEEE Inter-
national Geoscience and Remote Sensing Symposium,
Yokohama, Japan, pp. 10043-10046
Miteva, D., & Stefanova, E., 2020. Design of Learning An-
alytics Tool: The Experts' Eyes View. In CSEDU (2)
(pp. 307-314).
Moodle, 2020, https://stats.moodle.org/
Nafukho, F. M., Alfred, M., Chakraborty, M., Johnson, M.,
& Cherrstrom, C. A., 2017. Predicting workplace trans-
fer of learning. European Journal of training and De-
velopment,
Nissen, M.,E., 2006. Harnessing knowledge dynamics:
Principled organizational knowing & learning. p. 278.
Pachler, N.; Cuthell, J. P.; Preston, C.; Allen, A; Pin-
heiro−Torres, C. (2010) ICT CPD Landscape Review:
Final report. Becta ICT CPD RR.
Paleyes, A., Urma, R. G., & Lawrence, N. D., 2020. Chal-
lenges in Deploying Machine Learning: a Survey of
Case Studies. arXiv preprint arXiv:2011.09926.
Seliya, N. et al., 2009. A study on the relationships of clas-
sifier performance metrics. In 21st IEEE International
Conference on Tools with Artificial Intelligence. New-
ark, NJ, pp. 59-66.
Schelter, S., Biessmann, F., Januschowski, T., Salinas, D.,
Seufert, S., & Szarvas, G., 2018. On challenges in ma-
chine learning model management.
Silic, M., & Cyr, D., 2016. Colour arousal effect on users’
decision-making processes in the warning message
context. In International Conference on HCI in Busi-
ness, Government, and Organizations (pp. 99-109).
Springer, Cham.
Testers, L., Gegenfurtner, A., & Brand-Gruwel, S., 2020.
Taking Affective Learning in Digital Education One
Step Further: Trainees’ Affective Characteristics Pre-
dicting Multicontextual Pre-training Transfer Intention.
Frontiers in Psychology, 11.
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A., 2018.
The current landscape of learning analytics in higher
education. Computers in Human Behavior, 89, 98-110.
Vitolina, I., & Kapenieks, 2013. A. E-inclusion measure-
ment by e-learning course delivery. In: Procedia Com-
puter Science, 26, (pp. 101-112).
Vitolina, I., & Kapenieks, 2014 A. User analysis for e-in-
clusion in a blended learning course delivery context.
In Proceeding of the International Scientifical Confer-
ence May 23th–24th (Vol. 2).
Vitolina, I., Kapenieks A. (2020). E-inclusion Prediction
Modelling in Blended Learning Courses (accepted pa-
per), 23rd International Conference on Interactive Col-
laborative Learning.
Vitolina, I., Kapenieks A. (2020a). Comparision of E-inclu-
sion Prediction Models in Blended Learning Courses
(accepted paper), 19th International Conference e-Soci-
ety.
Yadav, S., & Shukla, S., 2016. Analysis of k-fold cross-val-
idation over hold-out validation on colossal datasets for
quality classification. In 2016 IEEE 6th International
conference on advanced computing (IACC) (pp. 78-83).
IEEE.