Chalapathy and Menon, 2017.Chalapathy, R. and Menon,
A. K. (2017). Robust, deep and inductive anomaly
detection. In Proceedings of ECML PKDD 2017.
Chen et al., 2016.Chen, X., Duan, Y., Houthooft, R., Schul-
man, J., Sutskever, I., and Abbeel, P. (2016). Infogan:
Interpretable representation learning by information
maximizing generative adversarial nets. In NIPS2016.
Chen et al., 2001.Chen, Y., Zhou, X., and Huang, T. S.
(2001). One-class svm for leaning in image retrieval.
In Proceedings IEEE International Conference on Im-
age Processing 2001.
Donahue et al., 2017.Donahue, J., Krahenbuhl, P., and Dar-
rell, T. (2017). Adversarial feature learning. In The In-
ternational Conference on Learning Representations
(ICLR).
Edmunds and Feinstein, 2017.Edmunds, R. and Feinstein,
E. (2017). Deep semi-supervised embeddings for dy-
namic targeted anomaly detection.
Ferentinos, 2018.Ferentinos, K. P. (2018). Deep learn-
ing models for plant disease detection and diagnosis.
Computers and Electronics in Agriculture, 145:311–
318.
Goodfellow et al., 2014.Goodfellow, I. J., Pouget-Abadie,
J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Deep learning
for anomaly detection: A survey.
Gulrajani et al., 2017.Gulrajani, I., Ahmed, F., Arjovsky,
M., Dumoulin, V., and Courville, A. (2017). Improved
training of wasserstein gans. In NIPS2017.
Hughes and Salathe, 2016.Hughes, D. P. and Salathe, M.
(2016). An open access repository of images on plant
health to enable the development of mobile disease di-
agnostics.
Isola et al., 2017.Isola, P., Zhu, J.-Y., Zhou, T., and Efros,
A. A. (2017). Image-to-image translation with condi-
tional adversarial networks. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Lample et al., 2016.Lample, G., Ballesteros, M., Subrama-
nian, S., Kawakami, K., and Dyer, C. (2016). Neu-
ral architectures for named entity recognition. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.
Mao et al., 2017.Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang,
Z., and Smolley, S. P. (2017). Least squares genera-
tive adversarial networks. In 2017 IEEE International
Conference on Computer Vision (ICCV).
Mohanty et al., 2016.Mohanty, S. P., Hughes, D. P., and
Salathe, M. (2016). Using deep learning for image-
based plant disease detection. Frontiers in Plant Sci-
ence, 22.
Patterson and Gibson, 2017.Patterson, J. and Gibson, A.
(2017). Deep Learning: A Practitioner’s Approach.
O’Reilly Media, Inc.
Paul et al., 2018.Paul, B., Sindy, L., Michael, F., David, S.,
and Carsten, S. (2018). Improving unsupervised de-
fect segmentation by applying structural similarity to
autoencoders. arXiv preprint arXiv:1807.02011.
Perera and Patel, 2019.Perera, P. and Patel, V. M. (2019).
Learning deep features for one-class classifica-
tion. IEEE Transactions on Image Processing,
28(11):5450–5463.
Racah et al., 2017.Racah, E., Beckham, C., Maharaj, T.,
Kahou, S. E., Prabhat, and Pal, C. (2017). Ex-
tremeweather: A large-scale climate dataset for semi-
supervised detection, localization, and understanding
of extreme weather events. In Advances in Neural In-
formation Processing Systems, pages 3402–3413.
Radford et al., 2016.Radford, A., Metz, L., and Chintala,
S. (2016). Unsupervised representation learning with
deep convolutional generative adversarial networks.
In ICLR2016.
Radovanovic and Ðukanovic, 2020.Radovanovic, D. and
Ðukanovic, S. (2020). Image-based plant disease de-
tection: A comparison of deep learning and classical
machine learning algorithms. In 24th International
Conference on Information Technology (IT).
Riley et al., 2002.Riley, M. B., Williamson, M. R., and
Maloy, O. (2002). Plant disease diagnosis.
Rodriguez et al., 1999.Rodriguez, P., Wiles, J., and Elman,
J. L. (1999). A recurrent neural network that learns to
count. Connection Science, 11(1):5–40.
Salimans et al., 2016.Salimans, T., Goodfellow, I.,
Zaremba, W., Cheung, V., Radford, A., and Chen, X.
(2016). Improved techniques for training gans.
Schlegl et al., 2019.Schlegl, T., Seebock, P., Waldstein,
S. M., Langs, G., and Schmidt-Erfurth, U. (2019).
f-anogan: Fast unsupervised anomaly detection with
generative adversarial networks. Medical Image Anal-
ysis, 54:30–44.
Schlegl et al., 2017.Schlegl, T., Seebock, P., Waldstein,
S. M., Schmidt-Erfurth, U., and Langs, G. (2017).
Unsupervised anomaly detection with generative ad-
versarial networks to guide marker discovery. In In-
ternational Conference on Information Processing in
Medical Imaging, pages 146–157.
Sharma et al., 2005.Sharma, G., Wu, W., and Dalal, E. N.
(2005). The ciede2000 color-difference rormula:
implementation notes, supplementary test data, and
mathematical observations. Color Research and Ap-
plication, 30(1).
Sutskever et al., 2008.Sutskever, I., Hinton, G., and Taylor,
G. (2008). The recurrent temporal restricted boltz-
mann machine. In Advances in Neural Information
Processing Systems 21 (NIPS 2008), pages 1601–
1608.
Tuor et al., 2017.Tuor, A., Kaplan, S., Hutchinson, B.,
Nichols, N., and Robinson, S. (2017). Deep learn-
ing for unsupervised insider threat detection in struc-
tured cybersecurity data streams. In Workshops at
the Thirty-First AAAI Conference on Artificial Intel-
ligence.
Vincent et al., 2008.Vincent, P., Larochelle, H., Bengio, Y.,
and Manzagol, P.-A. (2008). Extracting and compos-
ing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on
Machine learning, pages 1096–1103.
Image-based Plant Disease Diagnosis with Unsupervised Anomaly Detection based on Reconstructability of Colors
119