object detection. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 2019-June, 2883–2892.
Hu, X., Xu, X., Xiao, Y., Chen, H., He, S., Qin, J., & Heng,
P. A., 2019. SINet: A Scale-Insensitive Convolutional
Neural Network for Fast Vehicle Detection. IEEE
Transactions on Intelligent Transportation Systems,
20(3), 1010–1019.
Ibadov, S. R., Kalmykov, B. Y., Ibadov, R. R., & Sizyakin,
R. A., 2019. Method of Automated Detection of Traffic
Violation with a Convolutional Neural Network. EPJ
Web of Conferences, 224, 04004.
Ionescu, R. T., Alexe, B., Leordeanu, M., Popescu, M.,
Papadopoulos, D. P., & Ferrari, V., 2017. How hard can
it be? Estimating the difficulty of visual search in an
image. CoRR, arXiv, http://arxiv.org/abs/1705.08280.
Jodoin, J. P., Bilodeau, G. A., & Saunier, N., 2014. Urban
Tracker: Multiple object tracking in urban mixed traffic.
2014 IEEE Winter Conference on Applications of
Computer Vision, WACV 2014, 885–892.
Joy, F., & Vijaya Kumar, V., 2018. A Review on Multiple
Object Detection and Tracking in Smart City Video
Analytics. International Journal of Innovative
Technology and Exploring Engineering (IJITEE),
8(2S2), 2278–3075.
Krajewski, R., Bock, J., Kloeker, L., & Eckstein, L., 2018.
The highD Dataset: A Drone Dataset of Naturalistic
Vehicle Trajectories on German Highways for
Validation of Highly Automated Driving Systems. IEEE
Conference on Intelligent Transportation Systems,
Proceedings, ITSC, 2018-November, 2118–2125.
Kulkarni A., Rani E., 2018. KALMAN Filter Based Multiple
Object Tracking System. International Journal of
Electronics, Communication & Instrumentation
Engineering Research and Development, 8(2), 1–6.
Leal-Taixé, L., Milan, A., Reid, I., Roth, S., & Schindler, K.,
2015. MOTChallenge 2015: Towards a Benchmark for
Multi-Target Tracking. arXiv,
http://arxiv.org/abs/1504.01942.
Lee, J. T., Ryoo, M. S., Riley, M., & Aggarwal, J. K., 2009.
Real-time illegal parking detection in outdoor
environments using 1-D transformation. IEEE
Transactions on Circuits and Systems for Video
Technology, 19(7), 1014–1024.
Li, G., Song, H., Liao, Z., & Deng, K., 2019. An Effective
Algorithm for Video-Based Parking and Drop Event
Detection. Complexity, 2019.
Li, W., Mu, J., & Liu, G., 2019. Multiple Object Tracking
with Motion and Appearance Cues. Proceedings - 2019
International Conference on Computer Vision
Workshop, ICCVW 2019
, 161–169.
Li, X., Wang, K., Wang, W., & Li, Y., 2010. A multiple
object tracking method using Kalman filter. 2010 IEEE
International Conference on Information and
Automation, ICIA 2010, 1862–1866.
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X.,
& Pietikäinen, M., 2020. Deep Learning for Generic
Object Detection: A Survey. International Journal of
Computer Vision, 128(2), 261–318.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y. Y., & Berg, A. C., 2016. SSD: Single shot multibox
detector. Lecture Notes in Computer Science, 9905
LNCS, 21–37.
Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Zhao, X.,
& Kim, T.-K., 2014. Multiple Object Tracking: A
Literature Review. V(212), 1–18. arXiv,
http://arxiv.org/abs/1409.7618.
Luo, Z., Branchaud-Charron, F., Lemaire, C., Konrad, J., Li,
S., Mishra, A., Achkar, A., Eichel, J., & Jodoin, P. M.,
2018. MIO-TCD: A New Benchmark Dataset for
Vehicle Classification and Localization. IEEE
Transactions on Image Processing, 27(10), 5129–5141.
Mauri, A., Khemmar, R., Decoux, B., Ragot, N., Rossi, R.,
Trabelsi, R., Boutteau, R., Ertaud, J. Y., & Savatier, X.,
2020. Deep learning for real-time 3D multi-object
detection, localisation, and tracking: Application to smart
mobility. Sensors, 20(2).
Milan, A., Schindler, K., & Roth, S., 2013. Challenges of
ground truth evaluation of multi-target tracking. IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, 735–742.
MOT Challenge. Retrieved December 7, 2020, from
https://motchallenge.net/
Muro, S., Matsui, Y., Hashimoto, M., & Takahashi, K., 2019.
Moving-object tracking with lidar mounted on two-
wheeled vehicle. In proceedings of the 16th International
Conference on Informatics in Control, Automation and
Robotics (ICINCO), 2, 453–459.
Mykheievskyi, D., Borysenko, D., & Porokhonskyy, V.,
2020. Learning Local Feature Descriptors for Multiple
Object Tracking. Proceedings of the Asian Conference
on Computer Vision (ACCV).
Olszewska, J. I., 2016. Tracking the invisible man: Hidden-
object detection for complex visual scene understanding.
Proceedings of the 8th International Conference on
Agents and Artificial Intelligence (ICAART), 2, 223–229.
Ooi, H.-L., Bilodeau, G.-A., Saunier, N., & Beaupré, D.-A.,
2018. Multiple Object Tracking in Urban Traffic Scenes
with a Multiclass Object Detector. Lecture Notes in
Computer Science, 11241 LNCS, 727–736.
Rangesh, A., & Trivedi, M. M., 2019. No Blind Spots: Full-
Surround Multi-Object Tracking for Autonomous
Vehicles Using Cameras and LiDARs. IEEE
Transactions on Intelligent Vehicles, 4(4), 588–599.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A., 2016.
You only look once: Unified, real-time object detection.
Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2016-
Decem, 779–788.
Ren, C. Y., Prisacariu, V. A., Kähler, O., Reid, I. D., &
Murray, D. W., 2017. Real-Time Tracking of Single and
Multiple Objects from Depth-Colour Imagery Using 3D
Signed Distance Functions. International Journal of
Computer Vision, 124(1), 80–95.
Ren, S., He, K., Girshick, R., & Sun, J., 2017. Faster R-CNN:
Towards Real-Time Object Detection with Region
Proposal Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6), 1137–1149.