Herodotou, C., Rienties, B., Boroowa, A., Zdrahal, Z., &
Hlosta, M. (2019). A large-scale implementation of
predictive learning analytics in higher education: The
teachers’ role and perspective. Educational Technology
Research and Development, 67(5), 1273–1306.
https://doi.org/10.1007/s11423-019-09685-0
Hu, T., & Song, T. (2019). Research on XGboost academic
forecasting and analysis modelling. Journal of Physics:
Conference Series, 1324, 012091.
Jayaprakash, S. M., Moody, E. W., Lauría, E. J. M., Regan,
J. R., & Baron, J. D. (2014). Early Alert of
Academically At-Risk Students: An Open Source
Analytics Initiative. Journal of Learning Analytics,
1(1), 42.
Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-
Based Outliers: Algorithms and Applications.
Kong, J., Kowalczyk, W., Menzel, S., & Bäck, T. (2020).
Improving Imbalanced Classification by Anomaly
Detection. In T. Bäck, M. Preuss, A. Deutz, H. Wang,
C. Doerr, M. Emmerich, & H. Trautmann (Eds.),
Parallel Problem Solving from Nature (PPSN XVI) (pp.
512–523). Springer International Publishing.
Lauría, E. J. M., & Baron, J. (2011). Mining Sakai to
Measure Student Performance: Opportunities and
Challenges in Academic Analytics. ECC 2011.
Lauría, E. J. M., Moody, E. W., Jayaprakash, S. M.,
Jonnalagadda, N., & Baron, J., D. (2013). Open
academic analytics initiative: Initial research findings.
Proceedings of the Third International Conference on
Learning Analytics and Knowledge.
Lauría, E. J. M., Presutti, E., & Kapogiannis, M. (2019,
June). Of Stacks and Muses: Adventures in Learning
Analytics at Marist College. LatinX in AI Research at
ICML 2019. https://hal.archives-ouvertes.fr/hal-
02265832
Lauría, E. J. M., Presutti, E., Kapogiannis, M., & Kamath,
A. (2018). Stacking Classifiers for Early Detection of
Students at Risk. Proceedings of the 10th International
Conference on Computer Supported Education -
Volume 2: CSEDU 2018, 390–397.
Lauría, E. J. M., Presutti, E., Sokoloff, M., & Guarino, M.
(2016). Crossing the Chasm to Big Data: Early
Detection of at-Risk Students in a Cluster Computing
Environment. Proceedings of the 7th International
Learning Analytics & Knowledge Conference
(LAK’17)- Practitioner Track . Vancouver, Canada.
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation
Forest. Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining, 413–422.
Martins, M. P. G., Miguéis, V. L., Fonseca, D. S. B., &
Alves, A. (2019). A Data Mining Approach for
Predicting Academic Success – A Case Study. In Á.
Rocha, C. Ferrás, & M. Paredes (Eds.), Information
Technology and Systems (pp. 45–56). Springer
International Publishing.
Micenková, B., Mcwilliams, B., & Assent, I. (2014).
Learning Outlier Ensembles: The Best of Both Worlds
– Supervised and Unsupervised. 1–4.
Okubo, F., Yamashita, T., Shimada, A., & Ogata, H.
(2017). A neural network approach for students’
performance prediction. Proceedings of the Seventh
International Learning Analytics & Knowledge
Conference.
Pang, Y., Judd, N., O’Brien, J., & Ben-Avie, M. (2017).
Predicting students’ graduation outcomes through
support vector machines. 2017 IEEE Frontiers in
Education Conference (FIE), 1–8.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay,
E. (2011). Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12, 2825–2830.
Provost, F. (n.d.). Machine Learning from Imbalanced Data
Sets 101 (Extended Abstract).
Romero, C., López, M.-I., Luna, J.-M., & Ventura, S.
(2013). Predicting students’ final performance from
participation in on-line discussion forums. Computers
& Education, 68, 458–472.
Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J.,
& Williamson, R. C. (2001). Estimating the support of
a high-dimensional distribution. Neural Computation,
13(7), 1443–1471.
Sharmila, V. C., R, K. K., R, S., D, S., & R, H. (2019).
Credit Card Fraud Detection Using Anomaly
Techniques. 2019 1st International Conference on
Innovations in Information and Communication
Technology (ICIICT), 1–6.
Sheshadri, A., Gitinabard, N., Lynch, C. F., Barnes, T., &
Heckman, S. (2019). Predicting Student Performance
Based on Online Study Habits: A Study of Blended
Courses. CoRR, abs/1904.07331.
Smith, V. C., Lange, A., & Huston, D. R. (2012). Predictive
Modeling to Forecast Student Outcomes and Drive
Effective Interventions in Online Community College
Courses. Journal of Asynchronous Learning Networks,
16(3), 51–61. eric.
Wang, N., Chen, C., Xie, Y., & Ma, L. (2020). Brain Tumor
Anomaly Detection via Latent Regularized Adversarial
Network.
Yao, H., Lian, D., Cao, Y., Wu, Y., & Zhou, T. (2019).
Predicting Academic Performance for College
Students: A Campus Behavior Perspective. ACM
Trans. Intell. Syst. Technol., 10(3).
https://doi.org/10.1145/3299087
Zafra, A., & Ventura, S. (2012). Multi-instance genetic
programming for predicting student performance in
web based educational environments. Applied Soft
Computing, 12(8), 2693–2706.
Zhao, Y., & Hryniewicki, M. K. (2018). XGBOD:
Improving Supervised Outlier Detection with
Unsupervised Representation Learning. 2018
International Joint Conference on Neural Networks
(IJCNN).
Zhao, Y., Nasrullah, Z., & Li, Z. (2019). PyOD: A Python
Toolbox for Scalable Outlier Detection. Journal of
Machine Learning Research, 20(96), 1–7.
Zimek, A., Campello, R. J. G. B., & Sander, J. (2014).
Ensembles for Unsupervised Outlier Detection: