with stress induced by performance demands. Aviation,
Space, and Environmental Medicine, 76(6 Suppl),
B172-182.
Ekman, P. (2016). What Scientists Who Study Emotion
Agree About. Perspectives on Psychological Science,
11(1), 31–34. https://doi.org/10.1177/17456916155
96992
Ekman, P., & Friesen, W. V. (2003). Unmasking the Face:
A Guide to Recognizing Emotions from Facial Clues.
ISHK.
EU-OSHA. (2019). Third European Survey of Enterprises
on New and Emerging Risks [Reports]. European
Agency for Safety and Health at Work.
https://osha.europa.eu/en/publications/third-european-
survey-enterprises-new-and-emerging-risks-esener-
3/view
Gao, H., Yüce, A., & Thiran, J.-P. (2014). Detecting
emotional stress from facial expressions for driving
safety. 2014 IEEE International Conference on Image
Processing (ICIP), 5961–5965. https://doi.org/
10.1109/ICIP.2014.7026203
Giannakakis, G., Pediaditis, M., Manousos, D., Kazantzaki,
E., Chiarugi, F., Simos, P. G., Marias, K., & Tsiknakis,
M. (2016). Stress and anxiety detection using facial
cues from videos. Biomedical Signal Processing and
Control, 31, 89–101. https://doi.org/10.1016/
j.bspc.2016.06.020
Hung, J. C., Lin, K.-C., & Lai, N.-X. (2019). Recognizing
learning emotion based on convolutional neural
networks and transfer learning. Applied Soft
Computing, 84, 105724. https://doi.org/10.1016/
j.asoc.2019.105724
Kanade, T., Cohn, J. F., & Tian, Y. (2000). Comprehensive
database for facial expression analysis. Proceedings
Fourth IEEE International Conference on Automatic
Face and Gesture Recognition (Cat. No. PR00580),
46–53. https://doi.org/10.1109/AFGR.2000.840611
Lerner, J. S., Dahl, R. E., Hariri, A. R., & Taylor, S. E.
(2007). Facial Expressions of Emotion Reveal
Neuroendocrine and Cardiovascular Stress Responses.
Biological Psychiatry, 61(2), 253–260.
https://doi.org/10.1016/j.biopsych.2006.08.016
Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z.,
& Matthews, I. (2010). The Extended Cohn-Kanade
Dataset (CK+): A complete dataset for action unit and
emotion-specified expression. 2010 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition - Workshops, 94–101. https://doi.org/
10.1109/CVPRW.2010.5543262
Lundqvist, D., Flykt, A., & Öhman, A. (1998). The
Karolinska Directed Emotional Faces (KDEF), CD-
ROM from Department of Clinical Neuroscience,
Psychology section, Karolinska Institutet, ISBN 91-
630-7164-9.
Maaoui, C., Bousefsaf, F., & Pruski, A. (2015). Automatic
human stress detection based on webcam
photoplethysmographic signals. Journal of Mechanics
in Medicine and Biology, 16
. https://doi.org/
10.1142/S0219519416500391
Marcelino, P. (2018). Transfer learning from pre-trained
models. https://towardsdatascience.com/transfer-
learning-from-pre-trained-models-f2393f124751
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision, 115(3), 211–252.
https://doi.org/10.1007/s11263-015-0816-y
Simonyan, K., & Zisserman, A. (2015). Very Deep
Convolutional Networks for Large-Scale Image
Recognition. ArXiv: 1409.1556 [Cs].
http://arxiv.org/abs/1409.1556
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016).
Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning. ArXiv:1602.07261
[Cs]. http://arxiv.org/abs/1602.07261
Viegas, C., Lau, S.-H., Maxion, R., & Hauptmann, A.
(2018). Towards Independent Stress Detection: A
Dependent Model Using Facial Action Units. 2018
International Conference on Content-Based
Multimedia Indexing (CBMI), 1–6. https://doi.org/
10.1109/CBMI.2018.8516497
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a
standard process model for data mining. 29–39.