Table 4: Details of the Selected Message.
Date Time Group Id
2020/04/06 18:36 2020 117
2020/04/06 18:36 2020 133
2020/04/06 18:36 2020 153
2020/04/06 18:36 2020 187
2020/04/06 18:36 2020 243
2020/04/06 18:36 2020 26
2020/04/06 18:36 2020 96
2020/04/06 18:37 2020 128
2020/04/06 18:37 2020 131
2020/04/06 18:37 2020 174
2020/04/06 18:37 2020 84
2020/04/06 18:38 2020 146
2020/04/06 18:38 2020 170
2020/04/06 18:38 2020 171
2020/04/06 18:38 2020 22
2020/04/06 18:38 2020 225
2020/04/06 18:38 2020 229
2020/04/06 18:38 2020 233
2020/04/06 18:38 2020 73
2020/04/06 18:38 2020 99
2020/04/06 18:39 2020 105
2020/04/06 18:39 2020 226
posed platform. Initially, we characterize the used
dataset, explored the geographic distribution of the
messages and performed a vocabulary characteriza-
tion. Finally, we performed a misinformation analy-
sis and we identified a misinformation super-spreader.
As future work we will extend the Lighthouse plat-
form using big data and real-time technologies.
REFERENCES
Faustini, P. and Cov
˜
oes, T. (2019). Fake news detection
using one-class classification. In 2019 8th Brazilian
Conference on Intelligent Systems (BRACIS), pages
592–597.
Gaglani, J., Gandhi, Y., Gogate, S., and Halbe, A. (2020).
Unsupervised whatsapp fake news detection using se-
mantic search. In 2020 4th International Conference
on Intelligent Computing and Control Systems (ICI-
CCS), pages 285–289. IEEE.
Garimella, K. and Tyson, G. (2018). Whatsapp, doc? a first
look at whatsapp public group data. arXiv preprint
arXiv:1804.01473.
Hamdi, T., Slimi, H., Bounhas, I., and Slimani, Y. (2020).
A hybrid approach for fake news detection in twitter
based on user features and graph embedding. In Hung,
D. V. and D’Souza, M., editors, Distributed Comput-
ing and Internet Technology - 16th International Con-
ference, ICDCIT 2020, Bhubaneswar, India, January
9-12, 2020, Proceedings, volume 11969 of Lecture
Notes in Computer Science, pages 266–280. Springer.
Jedlitschka, A. and Pfahl, D. (2005). Reporting guidelines
for controlled experiments in software engineering. In
Empirical Software Engineering, 2005. 2005 Interna-
tional Symposium on, pages 10–pp. IEEE.
Kitchenham, B., Al-Khilidar, H., Babar, M. A., Berry,
M., Cox, K., Keung, J., Kurniawati, F., Staples, M.,
Zhang, H., and Zhu, L. (2008). Evaluating guidelines
for reporting empirical software engineering studies.
Empirical Software Engineering, 13(1):97–121.
Machado, C., Kira, B., Narayanan, V., Kollanyi, B., and
Howard, P. (2019). A study of misinformation in
whatsapp groups with a focus on the brazilian presi-
dential elections. WWW ’19, page 1013–1019, New
York, NY, USA. Association for Computing Machin-
ery.
Qiu, X., Oliveira, D. F., Shirazi, A. S., Flammini, A., and
Menczer, F. (2017). Limited individual attention and
online virality of low-quality information. Nature Hu-
man Behaviour, 1(7):0132.
Resende, G., Melo, P., Sousa, H., Messias, J., Vascon-
celos, M., Almeida, J., and Benevenuto, F. (2019).
(mis)information dissemination in whatsapp: Gather-
ing, analyzing and countermeasures.
Resende, G., Messias, J., Silva, M., Almeida, J., Vascon-
celos, M., and Benevenuto, F. (2018). A system for
monitoring public political groups in whatsapp. In
Proceedings of the 24th Brazilian Symposium on Mul-
timedia and the Web, WebMedia ’18, page 387–390,
New York, NY, USA. Association for Computing Ma-
chinery.
Robson, C. and McCartan, K. (2016). Real world research.
Wiley.
Runeson, P. and H
¨
ost, M. (2009). Guidelines for conduct-
ing and reporting case study research in software engi-
neering. Empirical software engineering, 14(2):131–
164.
Shu, K., Bernard, H. R., and Liu, H. (2018). Studying fake
news via network analysis: Detection and mitigation.
CoRR, abs/1804.10233.
Shu, K., Zhou, X., Wang, S., Zafarani, R., and Liu, H.
(2019). The role of user profiles for fake news de-
tection. In Proceedings of the 2019 IEEE/ACM Inter-
national Conference on Advances in Social Networks
Analysis and Mining, ASONAM ’19, page 436–439,
New York, NY, USA. Association for Computing Ma-
chinery.
Silva, R. M., Santos, R. L., Almeida, T. A., and Pardo,
T. A. (2020). Towards automatically filtering fake
news in portuguese. Expert Systems with Applications,
146:113199.
Su, Q., Wan, M., Liu, X., and Huang, C.-R. (2020). Mo-
tivations, methods and metrics of misinformation de-
tection: An nlp perspective. Natural Language Pro-
cessing Research, 1:1–13.
Vosoughi, S., Roy, D., and Aral, S. (2018). The spread of
true and false news online. Science, 359:1146–1151.
Zhang, Y. and Hara, T. (2020). A probabilistic model for
malicious user and rumor detection on social media.
In 53rd Hawaii International Conference on System
Sciences, HICSS 2020, Maui, Hawaii, USA, January
7-10, 2020, pages 1–10. ScholarSpace.
ICEIS 2021 - 23rd International Conference on Enterprise Information Systems
304