of vehicles. We also plan to explore what factors we
need to consider for self-learning ML models to as-
sure safety of the vehicle.
ACKNOWLEDGEMENTS
We thank Carlos Avalos-Gonzalez from kVA by UL
for feedback on the topic.
REFERENCES
Aradi, S. (2020). Survey of deep reinforcement learning
for motion planning of autonomous vehicles. arXiv
preprint arXiv:2001.11231.
Baylor, D., Breck, E., Cheng, H.-T., Fiedel, N., Foo, C. Y.,
Haque, Z., Haykal, S., Ispir, M., Jain, V., Koc, L.,
Koo, C. Y., Lew, L., Mewald, C., Modi, A. N., Poly-
zotis, N., Ramesh, S., Roy, S., Whang, S. E., Wicke,
M., Wilkiewicz, J., Zhang, X., and Zinkevich, M.
(2017). Tfx: A tensorflow-based production-scale ma-
chine learning platform. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’17, page
1387–1395, New York, NY, USA. Association for
Computing Machinery.
Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020).
Yolov4: Optimal speed and accuracy of object detec-
tion. arXiv preprint arXiv:2004.10934.
Briand, L. C., Labiche, Y., and O’Sullivan, L. (2003). Im-
pact analysis and change management of uml mod-
els. In International Conference on Software Main-
tenance, 2003. ICSM 2003. Proceedings., pages 256–
265.
BSI/PAS (2020). 1883:2020. Operational Design Do-
main (ODD) taxonomy for an automated driving sys-
tem (ADS) – Specification.
Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E.,
Xu, Q., Krishnan, A., Pan, Y., Baldan, G., and Bei-
jbom, O. (2020). nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 11621–11631.
Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015).
Deepdriving: Learning affordance for direct percep-
tion in autonomous driving. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 2722–2730.
Committee, S. O.-R. A. V. S. et al. (2018). Taxonomy and
definitions for terms related to driving automation sys-
tems for on-road motor vehicles. SAE Standard J,
3016.
Cui, L., Hu, J., Park, B. B., and Bujanovic, P. (2018). De-
velopment of a simulation platform for safety impact
analysis considering vehicle dynamics, sensor errors,
and communication latencies: Assessing cooperative
adaptive cruise control under cyber attack. Trans-
portation Research Part C: Emerging Technologies,
97:1–22.
Durisic, D., Nilsson, M., Staron, M., and Hansson, J.
(2013). Measuring the impact of changes to the com-
plexity and coupling properties of automotive soft-
ware systems. Journal of Systems and Software,
86(5):1275–1293.
Goknil, A., Kurtev, I., Van Den Berg, K., and Spijkerman,
W. (2014). Change impact analysis for requirements:
A metamodeling approach. Information and Software
Technology, 56(8):950–972.
Grigorescu, S., Trasnea, B., Cocias, T., and Macesanu,
G. (2020). A survey of deep learning techniques
for autonomous driving. Journal of Field Robotics,
37(3):362–386.
ISO (2018). 26262. Road Vehicles – Functional Safety.
ISO/PAS (2020). 21448. Road vehicles - Safety of the in-
tended functionality.
K
¨
aßmeyer, M., Schulze, M., and Schurius, M. (2015). A
process to support a systematic change impact analy-
sis of variability and safety in automotive functions.
In Proceedings of the 19th International Conference
on Software Product Line, SPLC ’15, page 235–244,
New York, NY, USA. Association for Computing Ma-
chinery.
Kretsou, M., Arvanitou, E.-M., Ampatzoglou, A., Deligian-
nis, I., and Gerogiannis, V. C. (2021). Change impact
analysis: A systematic mapping study. Journal of Sys-
tems and Software, 174:110892.
Pfeiffer, M., Schaeuble, M., Nieto, J., Siegwart, R., and
Cadena, C. (2017). From perception to decision: A
data-driven approach to end-to-end motion planning
for autonomous ground robots. In 2017 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 1527–1533.
Ren, X., Shah, F., Tip, F., Ryder, B. G., and Chesley, O.
(2004). Chianti: A tool for change impact analysis of
java programs. SIGPLAN Not., 39(10):432–448.
Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2020).
Scaled-yolov4: Scaling cross stage partial network.
arXiv preprint arXiv:2011.08036.
Yang, K., Wang, X., and Yu, R. (2018). A bayesian dy-
namic updating approach for urban expressway real-
time crash risk evaluation. Transportation Research
Part C: Emerging Technologies, 96:192–207.
Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F.,
Madhavan, V., and Darrell, T. (2020). Bdd100k: A
diverse driving dataset for heterogeneous multitask
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
2636–2645.
Zhao, J. (2002). Change impact analysis for aspect-oriented
software evolution. In Proceedings of the Interna-
tional Workshop on Principles of Software Evolution,
IWPSE ’02, page 108–112, New York, NY, USA. As-
sociation for Computing Machinery.
The Need for Location-based Machine Learning Models for Level 5 Automated Vehicles
661