mation retrieval perspective. Information Sciences,
181(24):5412–5434.
Lee, J., Yi, J.-S., and Son, J. (2019). Development of
automatic-extraction model of poisonous clauses in
international construction contracts using rule-based
nlp. Journal of Computing in Civil Engineering,
33(3):04019003.
Liddy, E. D. (2001). Natural language processing.
Mani, S., Gantayat, N., Aralikatte, R., Gupta, M., Dechu,
S., Sankaran, A., Khare, S., Mitchell, B., Subrama-
nian, H., and Venkatarangan, H. (2018). Hi, how can
i help you?: Automating enterprise it support help
desks. In Thirty-Second AAAI Conference on Artifi-
cial Intelligence.
Marx, E., Usbeck, R., Ngomo, A.-C. N., H
¨
offner, K.,
Lehmann, J., and Auer, S. (2014). Towards an open
question answering architecture. In Proceedings of the
10th International Conference on Semantic Systems,
pages 57–60.
Masseroli, M., Picozzi, M., Ghisalberti, G., and Ceri, S.
(2014). Explorative search of distributed bio-data to
answer complex biomedical questions. BMC bioin-
formatics, 15(S1):S3.
Molina Gallego, G. (2018). Analysis, discovery and ex-
ploitation of open data for the creation of question-
answering systems. Undergraduate Thesis, Universi-
dad de Alicante.
Mouromtsev, D., Vlasov, V., Parkhimovich, O., Galkin,
M., and Knyazev, V. (2013). Development of the
st. petersburg’s linked open data site using informa-
tion workbench. In Open Innovations Association
(FRUCT), 2013 14th Conference of, pages 77–82.
IEEE.
Murray-Rust, P., Neylon, C., Pollock, R., and Wilbanks, J.
(2010). Panton principles, principles for open data in
science. Panton Principles.
Nesi, P., Pantaleo, G., and Sanesi, G. (2015). A hadoop
based platform for natural language processing of web
pages and documents. Journal of Visual Languages &
Computing, 31:130–138.
Oliveira, M. I. S., de Oliveira, H. R., Oliveira, L. A., and
L
´
oscio, B. F. (2016). Open government data portals
analysis: the brazilian case. In Proceedings of the
17th International Digital Government Research Con-
ference on Digital Government Research, pages 415–
424.
Park, S., Kwon, S., Kim, B., Han, S., Shim, H., and Lee,
G. G. (2015). Question answering system using mul-
tiple information source and open type answer merge.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Demonstrations, pages 111–115.
Rocha, G. and Lopes Cardoso, H. (2018). Recognizing
textual entailment: challenges in the portuguese lan-
guage. Information, 9(4):76.
Rodrigues, R., Gonc¸alo Oliveira, H., and Gomes, P. (2018).
Nlpport: a pipeline for portuguese nlp (short pa-
per). In 7th Symposium on Languages, Applications
and Technologies (SLATE 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.
Roy, R. S. and Anand, A. (2020). Question answering
over curated and open web sources. arXiv preprint
arXiv:2004.11980.
Ruiz, M., Rom
´
an, C., Garrido,
´
A. L., and Mena, E. (2020).
uais: An experience of increasing performance of nlp
information extraction tasks from legal documents in
an electronic document management system. In ICEIS
(1), pages 189–196.
Singh, J. and Gupta, V. (2017). A systematic review of text
stemming techniques. Artificial Intelligence Review,
48(2):157–217.
Sowe, S. K. and Zettsu, K. (2015). Towards an open
data development model for linking heterogeneous
data sources. In Knowledge and Systems Engineer-
ing (KSE), 2015 Seventh International Conference on,
pages 344–347. IEEE.
Srba, I., Savic, M., Bielikova, M., Ivanovic, M., and
Pautasso, C. (2019). Employing community ques-
tion answering for online discussions in university
courses: Students’ perspective. Computers & Edu-
cation, 135:75–90.
Sy, M.-F., Ranwez, S., Montmain, J., Regnault, A., Cram-
pes, M., and Ranwez, V. (2012). User centered and
ontology based information retrieval system for life
sciences. BMC bioinformatics, 13(1):1–12.
Utomo, F., Suryana, N., and Azmi, M. S. (2017). Ques-
tion answering system: A review on question analy-
sis, document processing, and answer extraction tech-
niques. Journal of Theoretical and Applied Informa-
tion Technology, 95:3158–3174.
Wendt, M., Gerlach, M., and D
¨
uwiger, H. (2012). Linguis-
tic modeling of linked open data for question answer-
ing. In Extended Semantic Web Conference, pages
102–116. Springer.
White, R. W., Richardson, M., and Yih, W.-t. (2015).
Questions vs. queries in informational search tasks.
In Proceedings of the 24th International Conference
on World Wide Web, WWW ’15 Companion, page
135–136, New York, NY, USA. Association for Com-
puting Machinery.
Yao, X. and Van Durme, B. (2014). Information extrac-
tion over structured data: Question answering with
freebase. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 956–966.
Yin, Z., Zhang, C., Goldberg, D. W., and Prasad, S.
(2019). An nlp-based question answering framework
for spatio-temporal analysis and visualization. In Pro-
ceedings of the 2019 2nd International Conference on
Geoinformatics and Data Analysis, pages 61–65.
Zhang, C. and Yue, P. (2016). Spatial grid based open
government data mining. In Geoscience and Remote
Sensing Symposium (IGARSS), 2016 IEEE Interna-
tional, pages 192–193. IEEE.
APPENDIX
Models of questions in Portuguese accepted by the
QA prototype:
Querying Brazilian Educational Open Data using a Hybrid NLP-based Approach
129