(a) f
1
,D = 30 (b) f
2
,D = 30 (c) f
3
,D = 30 (d) f
4
,D = 30
Figure 26: Performance comparison between two mutation strategies (namely, UM and CM) on 30-D NLO functions.
REFERENCES
Almunif, A. and Fan, L. (2017). Mixed integer linear
programming and nonlinear programming for optimal
pmu placement. In North Amer. Power Symp., pages
1–6.
Chen, J. C., Cao, M., Zhan, Z. H., Liu, D., and Zhang, J.
(2020). A new and efficient genetic algorithm with
promotion selection operator. In IEEE Trans. Cybern.,
pages 1532–1537.
Eriksen, B. H. and Breivik, M. (2017). Mpc-based mid-
level collision avoidance for asvs using nonlinear pro-
gramming. In Proc. IEEE Conf. Control Technol.
Appl., pages 766–772.
Freisleben, B. and Merz, P. (1996). A genetic local search
algorithm for solving symmetric and asymmetric trav-
eling salesman problems. In Proc. IEEE Int. Conf.
Evol. Comput., pages 616–621.
Ganganath, N., Cheng, C., Fok, K., and Tse, C. K. (2016).
Trajectory planning for 3d printing: A revisit to trav-
eling salesman problem. In Proc. Int. Conf. Control.
Autom. Robot., pages 287–290.
Hildayanti, I. K., Soesanti, I., and Permanasari, A. E.
(2018). Performance comparison of genetic algo-
rithm operator combinations for optimization prob-
lems. In Proc. Int. Seminar Res. Inf. Technol. Intell.
Syst., pages 43–48.
Holland, J. H. (1992). Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA.
Huang, B., Buckley, B., and Kechadi, T.-M. (2010). Multi-
objective feature selection by using nsga-ii for cus-
tomer churn prediction in telecommunications. Expert
Syst. Appl., 37(5):3638 – 3646.
Kaur, D. and Murugappan, M. M. (2008). Performance en-
hancement in solving traveling salesman problem us-
ing hybrid genetic algorithm. In Proc. Biennial Conf.
North Amer. Fuzzy Inform. Process. Soc., pages 1–6.
Li, J., Meng, X., Zhou, M., and Dai, X. (2017). A two-
stage approach to path planning and collision avoid-
ance of multibridge machining systems. IEEE Trans.
Syst. Man Cybern. Syst., 47(7):1039–1049.
Li, Y., Zhang, S., and Zeng, X. (2009). Research of multi-
population agent genetic algorithm for feature selec-
tion. Expert Syst. Appl., 36(9):11570 – 11581.
Ma, F., Xu, Y., and Xu, P. (2017). A nonlinear program-
ming based universal optimization model of tdoa pas-
sive location. In Proc. Int. Conf. Intell. Syst. Knowl.
Eng., pages 1–3.
Pinho, R. and Saraiva, F. (2020). A comparison of crossover
operators in genetic algorithms for switch allocation
problem in power distribution systems. In Proc. IEEE
Congr. Evol. Comput., pages 1–8.
Wang, Z., Fang, X., Li, H., and Jin, H. (2020). An improved
partheno-genetic algorithm with reproduction mecha-
nism for the multiple traveling salesperson problem.
IEEE Access, 8:102607–102615.
Xie, J., Carrillo, L. R. G., and Jin, L. (2019). An inte-
grated traveling salesman and coverage path planning
problem for unmanned aircraft systems. IEEE Control
Syst, 3(1):67–72.
Yang, Q., Chen, W., Gu, T., Zhang, H., Yuan, H., Kwong,
S., and Zhang, J. (2020). A distributed swarm op-
timizer with adaptive communication for large-scale
optimization. IEEE Transactions on Cybernetics,
50(7):3393–3408.
Yang, Q., Chen, W., Li, Y., Chen, C. L. P., Xu, X., and
Zhang, J. (2017a). Multimodal estimation of distribu-
tion algorithms. IEEE Transactions on Cybernetics,
47(3):636–650.
Yang, Q., Chen, W., Yu, Z., Gu, T., Li, Y., Zhang, H., and
Zhang, J. (2017b). Adaptive multimodal continuous
ant colony optimization. IEEE Transactions on Evo-
lutionary Computation, 21(2):191–205.
Yu, F., Fu, X., Li, H., and Dong, G. (2016). Improved
roulette wheel selection-based genetic algorithm for
tsp. In Proc. Int. Conf. Netw. Inf. Syst. Comput., pages
151–154.
Yu, Y., Chen, Y., and Li, T. (2011). A new design of genetic
algorithm for solving tsp. In Proc. Int. Joint Conf.
Comput. Sci. Optim., pages 309–313.
Zhong, J., Hu, X., Zhang, J., and Gu, M. (2005). Compari-
son of performance between different selection strate-
gies on simple genetic algorithms. In Proc. IEEE Int.
Conf. Comput. Intell. Modelling Control Automat. Int.
Conf. Intell. Agents Web Technol. Internet Commerce,
volume 2, pages 1115–1121.
Zhou, H. and Song, M. (2016). An improvement of
partheno-genetic algorithm to solve multiple travel-
ling salesmen problem. In Proc. IEEE/ACIS Int. Conf.
Comput. Inf. Sci., pages 1–6.
Zorlu, O., Dilek, S., and
¨
Ozsoy, A. (2017). Gpu-based par-
allel genetic algorithm for increasing the coverage of
wsns. In Proc. IEEE Int. Conf. Parallel Distrib. Syst.,
pages 640–647.
Performance Analysis of Different Operators in Genetic Algorithm for Solving Continuous and Discrete Optimization Problems
547