S., Stiller, J., et al. (2020). Progressive cactus is
a multiple-genome aligner for the thousand-genome
era. Nature, 587(7833):246–251.
Asnicar, F., Thomas, A. M., Beghini, F., Mengoni, C., Ma-
nara, S., Manghi, P., Zhu, Q., Bolzan, M., Cumbo,
F., May, U., et al. (2020). Precise phylogenetic
analysis of microbial isolates and genomes from
metagenomes using phylophlan 3.0. Nature commu-
nications, 11(1):1–10.
Bawono, P., Dijkstra, M., Pirovano, W., Feenstra, A., Abeln,
S., and Heringa, J. (2017). Multiple sequence align-
ment. In Bioinformatics, pages 167–189. Springer.
Baxevanis, A. D., Bader, G. D., and Wishart, D. S. (2020).
Bioinformatics. John Wiley & Sons.
Boyce, K., Sievers, F., and Higgins, D. G. (2015). Instabil-
ity in progressive multiple sequence alignment algo-
rithms. Algorithms for molecular biology, 10(1):26.
Chatterjee, S., Hasibuzzaman, M., Iftiea, A., Mukharjee,
T., Nova, S. S., et al. (2019). A hybrid genetic al-
gorithm with chemical reaction optimization for mul-
tiple sequence alignment. In 2019 22nd International
Conference on Computer and Information Technology
(ICCIT), pages 1–6. IEEE.
Chentoufi, A., El Fatmi, A., Bekri, A., Benhlima, S.,
and Sabbane, M. (2016). Solving multiple rna se-
quences alignment by multi-objective genetic algo-
rithm method based on pareto optimality. In 2016 11th
International Conference on Intelligent Systems: The-
ories and Applications (SITA), pages 1–5. IEEE.
Chowdhury, B. and Garai, G. (2017). A review on multiple
sequence alignment from the perspective of genetic al-
gorithm. Genomics, 109(5-6):419–431.
Correa, J. M., de Melo, A. C. M. A., Jacobi, R. P., and
Boukerche, A. (2012). Parallel simulated annealing
for fragment based sequence alignment. In 2012 IEEE
26th International Parallel and Distributed Process-
ing Symposium Workshops & PhD Forum, pages 641–
648. IEEE.
Edgar, R. C. (2004). Muscle: multiple sequence align-
ment with high accuracy and high throughput. Nucleic
acids research, 32(5):1792–1797.
Edgar, R. C. and Batzoglou, S. (2006). Multiple sequence
alignment. Current opinion in structural biology,
16(3):368–373.
Elek, Z., Kov
´
acs, Z., Keszler, G., Szab
´
o, M., Csanky, E.,
Luo, J., Guttman, A., and R
´
onai, Z. (2020). High
throughput multiplex snp-analysis in chronic obstruc-
tive pulmonary disease and lung cancer. Current
Molecular Medicine, 20(3):185–193.
Fan, H., Wu, R., Liao, B., and Lu, X. (2012). An im-
proved genetic algorithm for multiple sequence align-
ment. Journal of Computational and Theoretical
Nanoscience, 9(10):1558–1564.
Gao, M. and Skolnick, J. (2020). A novel sequence align-
ment algorithm based on deep learning of the protein
folding code. Bioinformatics.
Gondro, C. and Kinghorn, B. P. (2007). A simple genetic
algorithm for multiple sequence alignment. Genetics
and Molecular Research, 6(4):964–982.
Ibrahim, I. M., Abdelmalek, D. H., Elshahat, M. E., and
Elfiky, A. A. (2020). Covid-19 spike-host cell receptor
grp78 binding site prediction. Journal of Infection.
Kasabov, N. K. (2019). Computational modelling and pat-
tern recognition in bioinformatics. In Time-Space,
Spiking Neural Networks and Brain-Inspired Artificial
Intelligence, pages 505–543. Springer.
Katoh, K., Misawa, K., Kuma, K.-i., and Miyata, T. (2002).
Mafft: a novel method for rapid multiple sequence
alignment based on fast fourier transform. Nucleic
acids research, 30(14):3059–3066.
Kaya, M., Kaya, B., and Alhajj, R. (2016). A novel multi-
objective genetic algorithm for multiple sequence
alignment. International Journal of Data Mining and
Bioinformatics, 14(2):139–158.
Kaya, M., Sarhan, A., and Alhajj, R. (2014). Multiple
sequence alignment with affine gap by using multi-
objective genetic algorithm. Computer methods and
programs in biomedicine, 114(1):38–49.
Kumar, M. (2015). An enhanced algorithm for multiple se-
quence alignment of protein sequences using genetic
algorithm. EXCLI journal, 14:1232.
Lassmann, T. (2019). Kalign 3: multiple sequence align-
ment of large datasets. Bioinformatics, 36(6):1928–
1929.
Le, Q., Sievers, F., and Higgins, D. G. (2017). Protein
multiple sequence alignment benchmarking through
secondary structure prediction. Bioinformatics,
33(9):1331–1337.
Lee, Z.-J., Su, S.-F., Chuang, C.-C., and Liu, K.-H. (2008).
Genetic algorithm with ant colony optimization (ga-
aco) for multiple sequence alignment. Applied Soft
Computing, 8(1):55–78.
Lemieux, J. E., Siddle, K. J., Shaw, B. M., Loreth, C.,
Schaffner, S. F., Gladden-Young, A., Adams, G., Fink,
T., Tomkins-Tinch, C. H., Krasilnikova, L. A., et al.
(2020). Phylogenetic analysis of sars-cov-2 in boston
highlights the impact of superspreading events. Sci-
ence.
Li, X., Wang, W., Zhao, X., Zai, J., Zhao, Q., Li, Y., and
Chaillon, A. (2020). Transmission dynamics and evo-
lutionary history of 2019-ncov. Journal of medical
virology, 92(5):501–511.
Martino, A., Giuliani, A., and Rizzi, A. (2018). Granu-
lar computing techniques for bioinformatics pattern
recognition problems in non-metric spaces. In Com-
putational Intelligence for Pattern Recognition, pages
53–81. Springer.
Nakamura, T., Yamada, K. D., Tomii, K., and Ka-
toh, K. (2018). Parallelization of mafft for large-
scale multiple sequence alignments. Bioinformatics,
34(14):2490–2492.
Nascimento, F. F., dos Reis, M., and Yang, Z. (2017). A bi-
ologist’s guide to bayesian phylogenetic analysis. Na-
ture ecology & evolution, 1(10):1446–1454.
Needleman, S. B. and Wunsch, C. D. (1970). A gen-
eral method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal
of molecular biology, 48(3):443–453.
Notredame, C. and Higgins, D. G. (1996). Saga: sequence
alignment by genetic algorithm. Nucleic acids re-
search, 24(8):1515–1524.
ICEIS 2021 - 23rd International Conference on Enterprise Information Systems
390