REFERENCES
Abdel-Basset, M., Abdel-Fatah, L., and Sangaiah, A. K.
(2018). Metaheuristic algorithms : A comprehensive
review. In Computational Intelligence for Multimedia
Big Data on the Cloud with Engineering Applications,
Intelligent Data-Centric Systems, pages 185–231.
Allegrini, J., Orehounig, K., Mavromatidis, G., Ruesch,
F., Dorer, V., and Evins, R. (2015). A review of
modelling approaches and tools for the simulation of
district-scale energy systems. Renewable and Sustain-
able Energy Reviews, 52:1391–1404.
Darmoul, S. (2010). Etude de la contribution des syst
`
emes
immunitaires artificiels au pilotage de syst
`
emes de
production en environnement perturb
´
e. 7.
Dave, E. (2011). L’Internet des objets : Comment
l’
´
evolution actuelle d’Internet transforme-t-elle le
monde ? Livre blanc, Cisco IBSG.
Gandomi, A.; Xin-She, Y. T. S. A. A. (2013). Metaheuristic
algorithms in modeling and optimization. Metaheuris-
tic Applications in Structures and Infrastructures, 1.
Glover, F. and S
¨
orensen, K. (2015). Metaheuristics. Schol-
arpedia.
Hutterer, S.; Auinger, F. A. M. S. G. (2010). Overview: A
simulation based metaheuristic optimization approach
to optimal power dispatch related to a smart electric
grid. Life System Modeling and Intelligent Comput-
ing, 6329.
Koza, J. (1992). Genetic programming: On the program-
ming of computers by means of natural selection.
Lee, K. Y. and El-Sharkawi, M. A. (2008). Modern heuristic
optimization techniques: Theory and applications to
power systems. John Wiley & Sons.
McCall, J. (2005). Genetic algorithms for modelling and
optimisation. Journal of Computational and Ap-
plied Mathematics, 184(1):205–222. Special Issue on
Mathematics Applied to Immunology.
Moxnes, E. (2015). An Introduction to Deterministic and
Stochastic Optimization. Analytical methods for Dy-
namic Modelers, mit press edition.
Ojha, V. K., Abraham, A., and Sn
´
a
ˇ
sel, V. (2017). Meta-
heuristic design of feedforward neural networks: A
review of two decades of research. Engineering Ap-
plications of Artificial Intelligence, 60:97–116.
Oltean, M. (2005). Evolving evolutionary algorithms using
linear genetic programming. Evolutionary Computa-
tion, 13:387–410.
Poggi, B. (2014). D
´
eveloppement de concepts et outils
d’aide
`
a la d
´
ecision pour l’optimisation via simula-
tion : int
´
egration des m
´
etaheuristiques au formalisme
DEVS. Doctorat en Informatique, Universit
´
e de Corse
Pascal - Paoli.
Schichl, H. (2004). Models and the history of modeling.
In Kallrath, J., editor, Modeling Languages in Mathe-
matical Optimization. Kluwer Academic Publishers.
Sharma, A. and Sharma, A. (2014a). A review of modeling
and simulation techniques. International Journal for
Research in Technological Studies.
Sharma, A. and Sharma, A. (2014b). A review of modeling
and simulation techniques. International Journal for
Research in Technological Studies, 1.
Sharma, A. and Sharma, D. (2011). Clonal selection al-
gorithm for classification. Artificial Immune Systems,
ICARIS, 2011:361–370.
Shtovba, S. D. (2005). Ant algorithms : Theory and appli-
cations. Programming and Computer Software, 31:4.
Sopov, E. (2017). Genetic programming hyper-heuristic for
the automated synthesis of selection operators in ge-
netic algorithms. IJCCI.
Tarraq, A. Elmariami, F. B. A. H. T. (2021). Meta-heuristic
optimization methods applied to renewable distributed
generation planning: A review. Conference: The In-
ternational Conference on Innovation, Modern Ap-
plied Science & Environmental Studies (ICIES2020),
234.
Wong, W. and Ming, C. I. (2019). A review on metaheuris-
tic algorithms: Recent trends, benchmarking and ap-
plications. In 2019 7th International Conference on
Smart Computing Communications (ICSCC), pages
1–5.
Xin-She, Y. (2011). Metaheuristic Optimization. Scholar-
pedia.
Xin-She, Y. (2014). Nature-inspired optimization algo-
rithms. pages 15–21.
Yin, C. and McKay2, A. (2018). Introduction to mod-
eling and simulation techniques. In The 8th Inter-
national Symposium on Computational Intelligence
and Industrial Applications (ISCIIA2018), pages 2–6,
Shandong, China, P., 2018. Tengzhou.
Zeigler, P. (2017). How can modeling and simulation
help engineering of system of systems? Compu-
tational Frameworks, Systems, Models and Applica-
tions, pages 1–46.
Zhang, J. (2011). Artificial immune algorithm to function
optimization problems. pages 667–670.
Using Meta-heuristics to Optimize the Parameterization of Algorithms in Simulation Models
223