ACKNOWLEDGMENTS
The authors would like to thank Jean-Louis Lanet and
Aur
´
elien Palisse for their for their helpful comments
and discussions.
REFERENCES
Ahmadian, M. M., Shahriari, H. R., and Ghaffarian, S. M.
(2015). Connection-monitor & connection-breaker: A
novel approach for prevention and detection of high
survivable ransomwares. In (ISCISC).
Akcora, C. G., Li, Y., Gel, Y. R., and Kantarcioglu,
M. (2019). Bitcoinheist: Topological data analysis
for ransomware detection on the bitcoin blockchain.
arXiv preprint.
Al-rimy, B. A. S., Maarof, M. A., Prasetyo, Y. A., Shaid, S.
Z. M., and Ariffin, A. F. M. (2018a). Zero-day aware
decision fusion-based model for crypto-ransomware
early detection. International Journal of Integrated
Engineering.
Al-rimy, B. A. S., Maarof, M. A., and Shaid, S. Z. M.
(2018b). Ransomware threat success factors, taxon-
omy, and countermeasures: A survey and research di-
rections. Computers & Security.
Al-rimy, B. A. S., Maarof, M. A., and Shaid, S. Z. M.
(2019). Crypto-ransomware early detection model us-
ing novel incremental bagging with enhanced semi-
random subspace selection. Future Generation Com-
puter Systems.
Almashhadani, A. O., Kaiiali, M., Sezer, S., and O’Kane, P.
(2019). A multi-classifier network-based crypto ran-
somware detection system: a case study of locky ran-
somware.
Ash, R. B. (1990). Information theory. Dover Publications,
Inc., New York. Corrected reprint of the 1965 original.
Aurangzeb, S., Aleem, M., Iqbal, M. A., Islam, M. A., et al.
(2017). Ransomware: a survey and trends. J. Inf.
Assur. Secur.
Baykara, M. and Sekin, B. (2018). A novel approach to
ransomware: Designing a safe zone system. In ISDFS.
IEEE.
Cabaj, K., Gregorczyk, M., and Mazurczyk, W. (2018).
Software-defined networking-based crypto ran-
somware detection using http traffic characteristics.
Computers & Electrical Engineering.
Castiglione, J. and Pavlovic, D. (2019). Dynamic dis-
tributed secure storage against ransomware. IEEE
Transactions on Computational Social Systems.
Chen, Z.-G., Kang, H.-S., Yin, S.-N., and Kim, S.-R.
(2017). Automatic ransomware detection and analysis
based on dynamic api calls flow graph. In Proceedings
of the International Conference on Research in Adap-
tive and Convergent Systems.
Continella, A., Guagnelli, A., Zingaro, G., Pasquale,
G. D., Barenghi, A., Zanero, S., and Maggi, F.
(2016). ShieldFS: A Self-healing, Ransomware-aware
Filesystem. In ACSAC. ACM.
Genc¸, Z. A., Lenzini, G., and Ryan, P. Y. (2018). Next gen-
eration cryptographic ransomware. In Nordic Confer-
ence on Secure IT Systems. Springer.
Hershey, J. R. and Olsen, P. A. (2007). Approximating the
kullback leibler divergence between gaussian mixture
models. In IEEE-ICASSP.
Huber, P. J. and Strassen, V. (1973). Minimax tests and the
neyman-pearson lemma for capacities. The Annals of
Statistics.
Katz, J. and Lindell, Y. (2007). Introduction to Modern
Cryptography (Chapman & Hall/Crc Cryptography
and Network Security Series). Chapman & Hall/CRC.
Kharraz, A., Arshad, S., Mulliner, C., Robertson, W. K.,
and Kirda, E. (2016). UNVEIL: A Large-Scale,
Automated Approach to Detecting Ransomware. In
USENIX.
Kharraz, A. and Kirda, E. Redemption: Real-Time Pro-
tection Against Ransomware at End-Hosts. In RAID
2017.
Kullback, S. and Leibler, R. A. (1951). On information and
sufficiency. Ann. Math. Statistics.
Lee, K., Lee, S.-Y., and Yim, K. (2019). Machine learning
based file entropy analysis for ransomware detection
in backup systems.
Moore, C. (2016). Detecting ransomware with honeypot
techniques. In 2016 Cybersecurity and Cyberforensics
Conference (CCC). IEEE.
Moussaileb, R. (2020). Log Analysis for Malicious Software
Detection. PhD thesis.
Moussaileb, R., Bouget, B., Palisse, A., Le Bouder, H.,
Cuppens, N., and Lanet, J.-L. (2018). Ransomware’s
early mitigation mechanisms. In Proceedings of the
13th International Conference on Availability, Relia-
bility and Security. ACM.
Moussaileb, R., Cuppens, N., Lanet, J.-L., and Le Bouder,
H. (2019). Ransomware network traffic analysis for
pre-encryption alert. In FPS2019.
Palisse, A., Durand, A., Le Bouder, H., Le Guernic, C.,
and Lanet, J.-L. (2017). Data aware defense (dad):
towards a generic and practical ransomware counter-
measure. In Nordic Conference on Secure IT Systems.
Springer.
Palisse, A., Le Bouder, H., Lanet, J.-L., Le Guernic, C., and
Legay, A. (2016). Ransomware and the legacy crypto
api. In International Conference on Risks and Security
of Internet and Systems. Springer.
Patton, M. W., Scott, N., Gutierrez, R. R., and Giovannini,
S. (2019). Behavior-based ransomware detection us-
ing decoy files.
Pont, J., Arief, B., and Hernandez-Castro, J. (2020). Why
current statistical approaches to ransomware detection
fail. In International Conference on Information Se-
curity. Springer.
Scaife, N., Carter, H., Traynor, P., and Butler, K. R. B.
(2016). CryptoLock (and Drop It): Stopping Ran-
somware Attacks on User Data. In ICDCS. IEEE.
Yassine Lemmou, H
´
el
`
ene Le Bouder, J.-L. L. (2019). Dis-
criminating unknown software using distance model.
Ransomware Detection using Markov Chain Models over File Headers
411