REFERENCES
Brownlee, J. (2019, August 11). A Tour of Machine
Learning Algorithms. Machine Learning Mastery.
https://machinelearningmastery.com/a-tour-of-
machine-learning-algorithms/
Chakrabarti, S., Ester, M., Fayyad, U., Gehrke, J., Han, J.,
Morishita, S., Piatetsky-Shapiro, G., & Wang, W.
(2006). Data Mining Curriculum: A Proposal (version
1.0). ACM SIGKDD. https://www.kdd.org/curriculum/
index.html
Chicco, D. (2017). Ten quick tips for machine learning in
computational biology. BioData Mining, 10(1), 35.
https://doi.org/10.1186/s13040-017-0155-3
Conati, C. (2010). Bayesian Student Modeling. In R.
Nkambou, J. Bourdeau, & R. Mizoguchi (Eds.),
Advances in Intelligent Tutoring Systems (pp. 281–
299). Springer. https://doi.org/10.1007/978-3-642-
14363-2_14
Corbett, A., & Anderson, J. (1994). Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User Modeling and User-Adapted Interaction, 4(4),
253–278.
Corbett, A., Anderson, J., & O’Brien, A. (1995). Chapter 2
-Student modeling in the ACT programming tutor. In P.
Nichols, S. Chipman, & R. Brennan (Eds.), Cognitively
diagnostic assessment. Lawrence Erlbaum Associates:
Hillsdale, NJ.
Crowston, K., Osterlund, C., Lee, T. K., Jackson, C.,
Harandi, M., Allen, S., Bahaadini, S., Coughlin, S.,
Katsaggelos, A. K., Larson, S. L., Rohani, N., Smith, J.
R., Trouille, L., & Zevin, M. (2020). Knowledge
Tracing to Model Learning in Online Citizen Science
Projects. Ieee Transactions on Learning Technologies,
13(1), 123–134. https://doi.org/10.1109/TLT.2019.29
36480
Das, K., & Behera, R. N. (2017). A Survey on Machine
Learning: Concept, Algorithms and Applications.
International Journal of Innovative Research in
Computer and Communication Engineering, 5(2).
https://doi.org/10.15680/IJIRCCE.2017. 0502001
Domingos, P. (2012). A few useful things to know about
machine learning. Communications of the ACM, 55(10),
78–87. https://doi.org/10.1145/2347736.2347755
Eagle, M., Corbett, A., Stamper, J., McLaren, B. M.,
Wagner, A., MacLaren, B., & Mitchell, A. (2016).
Estimating Individual Differences for Student
Modeling in Intelligent Tutors from Reading and
Pretest Data. In A. Micarelli, J. Stamper, & K.
Panourgia (Eds.), Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) (Vol.
9684, pp. 133–143). Springer International Publishing.
https://doi.org/10.1007/978-3-319-39583-8_13
El Mawas, N., Gilliot, J.-M., Garlatti, S., Euler, R., &
Pascual, S. (2019). As One Size Doesn’t Fit All,
Personalized Massive Open Online Courses Are
Required. In B. M. McLaren, R. Reilly, S. Zvacek, & J.
Uhomoibhi (Eds.), Computer Supported Education (Vol.
1022, pp. 470–488). Springer International Publishing.
https://doi.org/10.1007/978-3-030-21151-6_22
Giannandrea, L., & Sansoni, M. (2013). A literature review
on intelligent tutoring systems and on student profiling.
Learning & Teaching with Media & Technology, 287,
287–294.
Hämäläinen, W., & Vinni, M. (2010). Chapter 5—
Classifiers for educational data mining. In Handbook of
Educational Data Mining (pp. 57–74). CRC Press;
Taylor & Francis.
IBM. (2020, December 18). What is Machine Learning?
IBM Cloud Learn Hub. https://www.ibm.com/cloud/
learn/machine-learning
Mao, Y., Lin, C., & Chi, M. (2018). Deep Learning vs.
Bayesian Knowledge Tracing: Student Models for
Interventions. Journal of Educational Data Mining,
10(2).
Martins, A. C., Faria, L., De Carvalho, C. V., &
Carrapatoso, E. (2008). User modeling in adaptive
hypermedia educational systems. Journal of
Educational Technology & Society, 11(1), 194–207.
Millán, E., Jiménez, G., Belmonte, M. V., & Pérez-De-La-
Cruz, J. L. (2015). Learning Bayesian networks for
student modeling. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
9112, 718–721. https://doi.org/10.1007/978-3-319-
19773-9_100
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The
PRISMA Group. (2009). Preferred Reporting Items for
Systematic Reviews and Meta-Analyses: The PRISMA
Statement. PLOS Medicine, 6(7), e1000097.
https://doi.org/10.1371/journal.pmed.1000097
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018).
Foundations of Machine Learning, second edition. MIT
Press.
Nakić, J., Granić, A., & Glavinić, V. (2015). Anatomy of
student models in adaptive learning systems: A
systematic literature review of individual differences
from 2001 to 2013. Journal of Educational Computing
Research, 51(4), 459–489.
Olsson, F. (2009). A literature survey of active machine
learning in the context of natural language processing.
SICS Technical Report, 59.
Pavlik, P. I., Cen, H., & Koedinger, K. R. (2009).
Performance Factors Analysis—A New Alternative to
Knowledge Tracing. Online Submission, 8.
Pearl, J. (1988). Probabilistic reasoning in intelligent
systems: Networks of plausible inference (2nd ed.).
Morgan Kaufmann.
Pelánek, R. (2015). Metrics for Evaluation of Student
Models. https://doi.org/10.5281/ZENODO.3554665
Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M.,
Guibas, L. J., & Sohl-Dickstein, J. (2015). Deep
Knowledge Tracing. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, & R. Garnett (Eds.), Advances in Neural
Information Processing Systems (Vol. 28, pp. 505–
513). Curran Associates, Inc. https://proceedings.neu
rips.cc/paper/2015/file/bac9162b47c56fc8a4d2a51980
3d51b3-Paper.pdf