He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual
Learning for Image Recognition. ArXiv:1512.03385
[Cs]. http://arxiv.org/abs/1512. 03385
Hernandez, V. G., Perez, P. C., Perez, L. G. G., Balibrea, L.
M. T., & Puyosa Pina, H. (1995). Traditional and neural
networks algorithms: Applications to the inspection of
marble slab. 1995 IEEE International Conference on
Systems, Man and Cybernetics. Intelligent Systems for
the 21st Century, 5, 3960–3965. https://doi.org/10.
1109/ICSMC.1995. 538408
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., & Adam, H.
(2017). MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications.
ArXiv:1704.04861 [Cs]. http://arxiv.org/abs/1704.
04861
Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K.
Q. (2018). Densely Connected Convolutional
Networks. ArXiv:1608.06993 [Cs]. http://arxiv.org/
abs/1608.06993
Laskaridis, K., Patronis, M., Papatrechas, C., Xirokostas,
N., & Flippou, S. (2015). Directory of Greek
Ornamental & Structural Stones. Hellenic Survey of
Geology & Mineral Exploration.
Liu, X., Wang, H., Jing, H., Shao, A., & Wang, L. (2020).
Research on Intelligent Identification of Rock Types
Based on Faster R-CNN Method. IEEE Access, 8,
21804–21812. https://doi.org/10.1109/ACCESS. 2020.
2968515
Lopez, M., Martinez, J., Matia, J. M., Taboada, J., & Vilan,
J. A. (2010). Functional classification of ornamental
stone using machine learning techniques. Journal of
Computational and Applied Mathematics, 234, 1338–
1345. https://doi.org/10.1016/j.cam.2010. 01.054
Martínez-Alajarín, J., Luis-Delgado, Jose. D., & Tomas-
Balibrea Luis M. (2005). Automatic System for
Quality-Based Classification of Marble Textures. IEEE
Transactions on Systems, Man, and Cybernetics—Part
C: Applications and Reviews, 35(5). https://doi.org/
10.1109/TSMCC.2005.843236
Martínez-Cabeza-de-Vaca-Alajarín, J., & Tomás-Balibrea,
L. (1999). Marble slabs quality classification system
using texture recognition and neural networks
methodology. Undefined. /paper/Marble-slabs-quality-
classification-system-using-Mart%C3%ADnez-Cabez
a-de-Vaca-Alajar%C3%ADn-Tom%C3%A1s-Balibre
a/371b 2875a024c6b58d97abb6801f202e219e326d
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Müller, A.,
Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, É. (2018).
Scikit-learn: Machine Learning in Python.
ArXiv:1201.0490 [Cs]. http://arxiv.org/abs/1201.0490
Popescu, M.-C., Balas, V. E., Perescu-Popescu, L., &
Mastorakis, N. (2009). Multilayer Perceptron and
Neural Networks. WSEAS Trans. Cir. and Sys., 8(7),
579–588.
Ruder, S. (2017). An overview of gradient descent
optimization algorithms. ArXiv:1609.04747 [Cs].
http://arxiv.org/abs/1609.04747
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen,
L.-C. (2019). MobileNetV2: Inverted Residuals and
Linear Bottlenecks. ArXiv:1801.04381 [Cs]. http://ar
xiv.org/abs/1801.04381
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., & Batra, D. (2017). Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based
Localization. 2017 IEEE International Conference on
Computer Vision (ICCV), 618–626. https://doi.org/
10.1109/ICCV. 2017.74
Sidiropoulos, G. K., Ouzounis, A. G., Papakostas, G. A.,
Sarafis, I. T., Stamkos, A., & Solakis, G. (2021).
Texture Analysis for Machine Learning Based Marble
Tiles Sorting. 2021 IEEE 11th Annual Computing and
Communication Workshop and Conference (CCWC),
2021, pp. 0045-0051, doi: 10.1109/CCWC51732.2021.
9376086.
Simonyan, K., & Zisserman, A. (2015). Very Deep
Convolutional Networks for Large-Scale Image
Recognition. ArXiv:1409.1556 [Cs]. http://arxiv.org/
abs/1409.1556
Solakis. (n.d.). Retrieved January 6, 2021, from https://
www.solakismarble.com/
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016).
Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning. ArXiv:1602.07261
[Cs]. http://arxiv.org/abs/1602. 07261
Webb, G. I., Sammut, C., Perlich, C., Horváth, T., Wrobel,
S., Korb, K. B., Noble, W. S., Leslie, C., Lagoudakis,
M. G., Quadrianto, N., Buntine, W. L., Quadrianto, N.,
Buntine, W. L., Getoor, L., Namata, G., Getoor, L.,
Han, X. J., Jiawei, Ting, J.-A., Vijayakumar, S., …
Raedt, L. D. (2011). Logistic Regression. In C. Sammut
& G. I. Webb (Eds.), Encyclopedia of Machine
Learning (pp. 631–631). Springer US.
https://doi.org/10.1007/978-0-387-30164-8_493
Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y.
(2019). CutMix: Regularization Strategy to Train
Strong Classifiers with Localizable Features.
ArXiv:1905.04899[Cs]. http://arxiv.org/abs/1905. 04899
Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D.
(2018). mixup: Beyond Empirical Risk Minimization.
ArXiv:1710.09412 [Cs, Stat]. http://arxiv.org/abs/1710.
09412
Zhou, Z.-H. (2009). Ensemble Learning. In S. Z. Li & A.
Jain (Eds.), Encyclopedia of Biometrics (pp. 270–273).
Springer US. https://doi.org/10.1007/978-0-387-
73003-5_293