REFERENCES
Anderson, a. R. and Chaplain, M. a. (1998). Contin-
uous and discrete mathematical models of tumor-
induced angiogenesis. Bulletin of mathematical biol-
ogy, 60(5):857–899.
Bergstra JAMESBERGSTRA, J. and Yoshua Bengio
YOSHUABENGIO, U. (2012). Random Search for
Hyper-Parameter Optimization. Journal of Machine
Learning Research, 13:281–305.
Cai, Y., Wu, J., Li, Z., and Long, Q. (2016). Mathematical
Modelling of a brain tumour initiation and early de-
velopment: A coupled model of glioblastoma growth,
pre-existing vessel co-option, angiogenesis and blood
perfusion. PLoS ONE, 11(3):1–28.
Cai, Y., Xu, S., Wu, J., and Long, Q. (2011). Coupled
modelling of tumour angiogenesis, tumour growth
and blood perfusion. Journal of Theoretical Biology,
279(1):90–101.
Chen, Y., Alvarez, E. A., Azzam, D., Wander, S. A., Gug-
gisberg, N., Jord
`
a, M., Ju, Z., Hennessy, B. T., and
Slingerland, J. M. Combined Src and ER blockade
impairs human breast cancer proliferation in vitro and
in vivo.
Duval, K., Grover, H., Han, L. H., Mou, Y., Pegoraro, A. F.,
Fredberg, J., and Chen, Z. (2017). Modeling physio-
logical events in 2D vs. 3D cell culture.
Gabhann, F. M., Ji, J. W., and Popel, A. S. Computational
Model of Vascular Endothelial Growth Factor Spatial
Distribution in Muscle and Pro-Angiogenic Cell Ther-
apy.
Guyer, J. E., Wheeler, D., and Warren, J. A. (1988). FiPy:
Partial Differential Equations with Python. Comput-
ing in Science Engineering, 11(3):6–15.
Hoarau-V
´
echot, J., Rafii, A., Touboul, C., and Pasquier,
J. (2018). Halfway between 2D and animal mod-
els: Are 3D cultures the ideal tool to study cancer-
microenvironment interactions?
Imamura, Y., Mukohara, T., Shimono, Y., Funakoshi, Y.,
Chayahara, N., Toyoda, M., Kiyota, N., Takao, S.,
Kono, S., Nakatsura, T., and Minami, H. (2015).
Comparison of 2D- and 3D-culture models as drug-
testing platforms in breast cancer. Oncology Reports,
33(4):1837–1843.
Lv, D., Hu, Z., Lu, L., Lu, H., and Xu, X. (2017). Three-
dimensional cell culture: A powerful tool in tumor re-
search and drug discovery.
Melissaridou, S., Wiechec, E., Magan, M., Jain, M. V.,
Chung, M. K., Farnebo, L., and Roberg, K. (2019).
The effect of 2D and 3D cell cultures on treatment
response, EMT profile and stem cell features in head
and neck cancer 11 Medical and Health Sciences 1112
Oncology and Carcinogenesis. Cancer Cell Interna-
tional, 19(1).
Olsen, M. M. and Siegelmann, H. T. (2013). Multiscale
agent-based model of tumor angiogenesis. Procedia
Computer Science, 18:1016–1025.
Philip, B., Ito, K., Moreno-S
´
anchez, R., and Ralph, S. J.
(2013). HiF expression and the role of hypoxic mi-
croenvironments within primary tumours as protective
sites driving cancer stem cell renewal and metastatic
progression. Carcinogenesis, 34(8):1699–1707.
Pickl, M. and Ries, C. H. (2009). Comparison of 3D
and 2D tumor models reveals enhanced HER2 acti-
vation in 3D associated with an increased response to
trastuzumab. Oncogene, 28(3):461–468.
Riedl, A., Schlederer, M., Pudelko, K., Stadler, M., Wal-
ter, S., Unterleuthner, D., Unger, C., Kramer, N.,
Hengstschl
¨
ager, M., Kenner, L., Pfeiffer, D., Krupitza,
G., and Dolznig, H. (2017). Comparison of cancer
cells in 2D vs 3D culture reveals differences in AKT-
mTOR-S6K signaling and drug responses. Journal of
Cell Science, 130(1):203–218.
Rios, L. M., Nikolaos, ·., Sahinidis, V., and Rios, L. M.
(2013). Derivative-free optimization: a review of
algorithms and comparison of software implementa-
tions. J Glob Optim, 56:1247–1293.
Semenza, G. L. (2007). HIF-1 mediates the Warburg effect
in clear cell renal carcinoma. Journal of Bioenergetics
and Biomembranes, 39(3):231–234.
Shirinifard, A., Gens, J. S., Zaitlen, B. L., Popławski, N. J.,
Swat, M., and Glazier, J. A. (2009). 3D multi-cell
simulation of tumor growth and angiogenesis. PLoS
ONE, 4(10).
Sinek, J., Frieboes, H., Zheng, X., and Cristini, V. (2004).
Two-dimensional chemotherapy simulations demon-
strate fundamental transport and tumor response limi-
tations involving nanoparticles. Biomedical Microde-
vices, 6(4):297–309.
Skeldon, A. C., Chaffey, G., Lloyd, D. J., Mohan, V.,
Bradley, D. A., and Nisbet, A. (2012). Modelling
and detecting tumour oxygenation levels. PLoS ONE,
7(6):1–29.
St, A., ˜phanou, ., Mcdougall, S. R., Anderson, A. A. A.,
and Chaplain, M. A. J. (2005). MATHEMATI-
CAL AND Mathematical Modelling of Flow in 2D
and 3D Vascular Networks: Applications to Anti-
Angiogenic and Chemotherapeutic Drug Strategies.
COMPUTER MODELLING Mathematical and Com-
puter Modelling, 41:1137–1156.
Sun, X., Zhang, L., Tan, H., Bao, J., Strouthos, C., and
Zhou, X. (2012). Multi-scale agent-based brain cancer
modeling and prediction of TKI treatment response:
Incorporating EGFR signaling pathway and angiogen-
esis. Technical report.
Turner, S. and Sherratt, J. A. (2002). Intercellular adhesion
and cancer invasion: A discrete simulation using the
extended potts model. Journal of Theoretical Biology,
216(1):85–100.
Zhang, L., Jiang, B., Wu, Y., Strouthos, C., Zhe Sun, P.,
Su, J., and Zhou, X. (2011). Developing a multi-
scale, multi-resolution agent-based brain tumor model
by graphics processing units. Technical report.
The Trap of 2D in Artificial Models of Tumours: The Case for 3D In-silico Simulations
247