camera_back/
camera_front/
odometry.csv
<timestamp>.png
<timestamp>.png
<timestamp>.png
<timestamp>.png
2020-02-05-18-37-10/
Figure 6: Structure of a folder generated by using the
Python script (extract_rosbag.py) to extract the content
of the rosbag file "2020-02-05-18-37-10.bag".
4 CONCLUSION
In this paper, we have presented a new dataset that
contains challenging environmental conditions for
long-term localization. This dataset was recorded
over two years and it contains more than 100 se-
quences. We made our dataset available to the com-
munity in the hope that it will be useful to other re-
searchers working in the field of long-term localiza-
tion. This dataset was used in our previous works
to evaluated the performance of different localization
approaches in dynamic environments.
ACKNOWLEDGEMENTS
This work has been sponsored by the French govern-
ment research program "Investissements d’Avenir"
through the IMobS3 Laboratory of Excellence (ANR-
10-LABX-16-01) and the RobotEx Equipment of
Excellence (ANR-10-EQPX-44), by the European
Union through the Regional Competitiveness and
Employment program 2014-2020 (ERDF - AURA re-
gion) and by the AURA region.
REFERENCES
Bansal, A., Badino, H., and Huber, D. (2014). Under-
standing how camera configuration and environmen-
tal conditions affect appearance-based localization. In
2014 IEEE Intelligent Vehicles Symposium Proceed-
ings, pages 800–807. IEEE.
Barreto, J. P. (2006). Unifying image plane liftings for cen-
tral catadioptric and dioptric cameras. In Imaging Be-
yond the Pinhole Camera, pages 21–38. Springer.
Blanco-Claraco, J.-L., Moreno-Duenas, F.-A., and
González-Jiménez, J. (2014). The málaga urban
dataset: High-rate stereo and lidar in a realistic urban
scenario. The International Journal of Robotics
Research, 33(2):207–214.
Bouaziz, Y., Royer, E., Bresson, G., and Dhome, M. (2021).
Keyframes retrieval for robust long-term visual local-
ization in changing conditions. In to appear in 2021
IEEE 19th World Symposium on Applied Machine In-
telligence and Informatics (SAMI). IEEE.
Carlevaris-Bianco, N., Ushani, A. K., and Eustice, R. M.
(2015). University of Michigan North Campus long-
term vision and lidar dataset. International Journal of
Robotics Research, 35(9):1023–1035.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013).
Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–
1237.
Lébraly, P. (2012). Etalonnage de caméras à champs dis-
joints et reconstruction 3D: Application à un robot
mobile. PhD thesis.
Maddern, W., Pascoe, G., Linegar, C., and Newman, P.
(2017). 1 Year, 1000km: The Oxford RobotCar
Dataset. The International Journal of Robotics Re-
search (IJRR), 36(1):3–15.
Pandey, G., McBride, J. R., and Eustice, R. M. (2011). Ford
campus vision and lidar data set. The International
Journal of Robotics Research, 30(13):1543–1552.
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). Ros: an
open-source robot operating system. In ICRA work-
shop on open source software, volume 3, page 5.
Kobe, Japan.
Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand,
L., Stenborg, E., Safari, D., Okutomi, M., Pollefeys,
M., Sivic, J., et al. (2018). Benchmarking 6dof out-
door visual localization in changing conditions. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 8601–8610.
Siegwart, R., Nourbakhsh, I. R., and Scaramuzza, D.
(2011). Introduction to autonomous mobile robots.
MIT press.
Suenderhauf, N. (2015). The vprice challenge 2015 – visual
place recognition in changing environments.
Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Pat-
naik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine,
B., et al. (2020). Scalability in perception for au-
tonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2446–2454.
Xie, J., Kiefel, M., Sun, M.-T., and Geiger, A. (2016). Se-
mantic instance annotation of street scenes by 3d to 2d
label transfer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3688–3697.
Yan, Z., Sun, L., Krajnik, T., and Ruichek, Y. (2020).
EU long-term dataset with multiple sensors for au-
tonomous driving. In Proceedings of the 2020
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).
Over Two Years of Challenging Environmental Conditions for Localization: The IPLT Dataset
387