search on text and knowledge bases. Foundations and
Trends® in Information Retrieval, 10(2-3):119–271.
Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., and
Sudarshan, S. (2002). Keyword searching and brows-
ing in databases using BANKS. In Proceedings of the
18th International Conference on Data Engineering
(ICDE’02), pages 431–440.
Bizer, C. and Schultz, A. (2009). The berlin sparql bench-
mark. International Journal on Semantic Web and
Information Systems (IJSWIS), 5(2):1–24.
Coffman, J. and Weaver, A. C. (2010). A framework for
evaluating database keyword search strategies. In Pro-
ceedings of the 19th ACM International Conference
on Information and Knowledge Management, pages
729–738.
Dosso, D. and Silvello, G. (2020). Search Text to Retrieve
Graphs: a Scalable RDF Keyword-Based Search Sys-
tem. IEEE Access, 8:14089–14111.
Dourado, M. C. and de Oliveira, R. A. (2009). Generating
all the Steiner trees and computing Steiner intervals
for a fixed number of terminals. Electronic Notes in
Discrete Mathematics, 35:323–328.
Dubey, M., Banerjee, D., Abdelkawi, A., and Lehmann, J.
(2019). LC-QuAD 2.0: A Large Dataset for Complex
Question Answering over Wikidata and DBpedia. In
Proceedings of the 18th International Semantic Web
Conference (ISWC’19), pages 69–78.
Elbassuoni, S. and Blanco, R. (2011). Keyword search over
RDF graphs. In Proceedings of the 20th ACM Inter-
national Conference on Information and Knowledge
Management (CIKM’11), pages 237–242.
Garc
´
ıa, G. M., Izquierdo, Y. T., Menendez, E. S., Dartayre,
F., and Casanova, M. A. (2017). RDF Keyword-based
Query Technology Meets a Real-World Dataset. In
Proceedings of the 20th International Conference on
Database Theory (ICDT’17), pages 656–667.
Guo, Y., Pan, Z., and Heflin, J. (2005). LUBM: A Benchmark
for OWL Knowledge Base Systems. Journal of Web
Semantics, 3(2-3):158–182.
Han, S., Zou, L., Yu, J. X., and Zhao, D. (2017). Key-
word search on RDF graphs - A query graph assembly
approach. In Proceedings of the 2017 ACM on Confer-
ence on Information and Knowledge (CIKM’17), pages
227–236.
Hristidis, V. and Papakonstantinou, Y. (2002). DISCOVER:
Keyword Search in Relational Databases. In Proceed-
ings of the 28th VLDB (VLDB’02), pages 670–681.
Izquierdo, Y. T., Garc
´
ıa, G. M., Menendez, E. S., Casanova,
M. A., Dartayre, F., and Levy, C. H. (2018). QUIOW: A
keyword-based query processing tool for RDF datasets
and relational databases. In Proceedings of the 30th
International Conference on Database and Expert Sys-
tems Applications (DEXA’18), volume 11030 LNCS,
pages 259–269.
Kimelfeld, B. and Sagiv, Y. (2008). Efficiently enumerating
results of keyword search over data graphs. Informa-
tion Systems, 33(4-5):335–359.
Le, W., Li, F., Kementsietsidis, A., and Duan, S. (2014). Scal-
able keyword search on large RDF data. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE),
26(11):2774–2788.
Lin, X. Q., Ma, Z. M., and Yan, L. (2018). RDF keyword
search using a type-based summary. Journal of Infor-
mation Science and Engineering, 34(2):489–504.
Menendez, E. S., Casanova, M. A., Paes Leme, L. A. P., and
Boughanem, M. (2019). Novel Node Importance Mea-
sures to Improve Keyword Search over RDF Graphs.
In Proceedings of the 31st International Conference on
Database and Expert Systems Applications (DEXA’19),
volume 11707, pages 143–158.
Nunes, B. P., Herrera, J., Taibi, D., Lopes, G. R., Casanova,
M. A., and Dietze, S. (2014). SCS Connector - Quanti-
fying and Visualising Semantic Paths Between Entity
Pairs. In Proceedings of the Satellite Events of the
11th European Semantic Web Conference (ESWC’14),
pages 461–466.
Oliveira, P. S. d., Da Silva, A., Moura, E., and De Fre-
itas, R. (2020). Efficient Match-Based Candidate Net-
work Generation for Keyword Queries over Relational
Databases. IEEE Transactions on Knowledge and Data
Engineering, pages 1–1.
Oliveira Filho, A. d. C. (2018). Benchmark para m
´
etodos
de consultas por palavras-chave a bancos de dados
relacionais. Technical report.
Rihany, M., Kedad, Z., and Lopes, S. (2018). Keyword
search over RDF graphs using wordnet. In Proceedings
of the 1st International Conference on Big Data and
Cyber-Security Intelligence (BDCSIntell’18), volume
2343, pages 75–82.
Tran, T., Wang, H., Rudolph, S., and Cimiano, P. (2009). Top-
k exploration of query candidates for efficient keyword
search on graph-shaped (RDF) data. In Proceedings of
the 25th International Conference on Data Engineer-
ing (ICDE’09), pages 405–416.
Trivedi, P., Maheshwari, G., Dubey, M., and Lehmann, J.
(2017). LC-QuAD: A Corpus for Complex Question
Answering over Knowledge Graphs. In Proceedings
of the 16th International Semantic Web Conference
(ISWC’17), pages 210–218.
Wen, Y., Jin, Y., and Yuan, X. (2018). KAT: Keywords-to-
SPARQL translation over RDF graphs. In Proceedings
of the 23rd International Conference on Database Sys-
tems for Advanced Applications (DASFAA’18), volume
10827 LNCS, pages 802–810.
Zenz, G., Zhou, X., Minack, E., Siberski, W., and
Nejdl, W. (2009). From keywords to semantic
queries—Incremental query construction on the Se-
mantic Web. Web Semantics: Science, Services and
Agents on the World Wide Web, 7(3):166–176.
Zheng, W., Zou, L., Peng, W., Yan, X., Song, S., and Zhao,
D. (2016). Semantic SPARQL similarity search over
RDF knowledge graphs. In Proceedings of the 42nd
VLDB (VLDB’16), volume 9, pages 840–851.
Zhou, Q., Wang, C., Xiong, M., Wang, H., and Yu, Y. (2007).
SPARK: Adapting keyword query to semantic search.
In Proceedings of the 6th International Semantic Web
Conference (ISWC’07), volume 4825 LNCS, pages
694–707, Busan, Korea.
Automatic Construction of Benchmarks for RDF Keyword Search Systems Evaluation
137