Engineering, pages 353–367, Cham. Springer Interna-
tional Publishing.
Douglass, B. P. (2011). Design patterns for embedded sys-
tems in C: An embedded software engineering toolkit.
Newnes/Elsevier, Oxford and Burlington, MA.
Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., and
Hindia, M. N. (2018). An overview of internet of
things (iot) and data analytics in agriculture: Bene-
fits and challenges. IEEE Internet of Things Journal,
5(5):3758–3773.
Friedli, M., Kaufmann, L., Paganini, F., and Kyburz, R.
(2016). Energy efficiency of the internet of things:
Technology and energy assessment report prepared for
iea 4e edna.
Georgiou, K., Xavier-de Souza, S., and Eder, K. (2018). The
iot energy challenge: A software perspective. IEEE
Embedded Systems Letters, 10(3):53–56.
Gomez, C., DeAntoni, J., and Mallet, F. (2012). Multi-view
power modeling based on uml, marte and sysml. In
Cortellessa, V., editor, 38th EUROMICRO Conference
on Software Engineering and Advanced Applications
(SEAA), 2012, pages 17–20, Piscataway, NJ. IEEE.
Gries, M. (2004). Methods for evaluating and covering the
design space during early design development. Integr.
VLSI J., 38(2):131–183.
Gupta, A., Tsai, T., Rueb, D., Yamaji, M., and Middleton,
P. (2017). Forecast: Internet of things: Endpoints and
associated services, worldwide, 2017.
Hagner, M., Aniculaesei, A., and Goltz, U. (2011). Uml-
based analysis of power consumption for real-time em-
bedded systems. In 2011IEEE 10th International Con-
ference on Trust, Security and Privacy in Computing
and Communications, pages 1196–1201. IEEE.
IBM (2021). Rational Rhapsody Developer.
https://www.ibm.com/products/uml-tools. Accessed:
12.02.2021.
IEEE SA (2014). IEEE Standard for IP-XACT, Standard
Structure for Packaging, Integrating, and Reusing IP
within Tool Flows. Document Number IEEE 1685-
2014 (https://standards.ieee.org/standard/1685-2014.
html).
Iyenghar, P. and Pulvermueller, E. (2018). A model-driven
workflow for energy-aware scheduling analysis of iot-
enabled use cases. IEEE Internet of Things Journal,
5(6):4914–4925.
Julien, N., Laurent, J., Senn, E., and Martin, E. (2003). Power
consumption modeling and characterization of the ti
c6201. IEEE Micro, 23(5):40–49.
Martinez, B., Monton, M., Vilajosana, I., and Prades, J. D.
(2015). The power of models: Modeling power con-
sumption for iot devices. IEEE Sensors Journal,
15(10):5777–5789.
Nurseitov, N., Paulson, M., Reynolds, R., and Izurieta, C.
(2009). Comparison of json and xml data interchange
formats: a case study. Caine, 9:157–162.
NXP Semiconductors (2019). LPC5411x - Product data
sheet, Rev. 2.5. Document identifier LPC5411x (https:
//www.nxp.com/docs/en/data-sheet/LPC5411X.pdf).
Object Management Group (2017). Unified Modeling
Language, Version 2.5.1. OMG Document Number
formal/17-12-05 (https://www.omg.org/spec/UML/2.
5.1/).
Object Management Group (2019a). A UML Profile for
MARTE: Modeling and Analysis of Real-Time and
Embedded Systems, Version 1.2. OMG Document
Number formal/19-04-01 (https://www.omg.org/spec/
MARTE/1.2/).
Object Management Group (2019b). Meta Object Facility,
Version 2.5.1. OMG Document Number formal/19-10-
01 (https://www.omg.org/spec/MOF/2.5.1/).
Pang, C., Hindle, A., Adams, B., and Hassan, A. E. (2016).
What do programmers know about software energy
consumption? IEEE Software, 33(3):83–89.
Pathak, A., Hu, Y. C., and Zhang, M. (2011). Bootstrapping
energy debugging on smartphones: A first look at en-
ergy bugs in mobile devices. HotNets-X, New York,
NY, USA. Association for Computing Machinery.
Schaarschmidt, M., Uelschen, M., Pulverm
¨
uller, E., and
Westerkamp, C. (2020). Framework of software de-
sign patterns for energy-aware embedded systems. In
Proceedings of the 15th International Conference on
Evaluation of Novel Approaches to Software Engineer-
ing - Volume 1: ENASE, pages 62–73.
Selic, B. and G
´
erard, S. (2014). Modeling and analysis
of real-time and embedded systems with UML and
MARTE: Developing cyber-physical systems. Morgan
Kaufmann, Waltham, MA.
Silicon Labs (2010). Energy debugging tools for embedded
applications. Technical report.
SparxSystems (2020). Enterprise architect tool.
https://sparxsystems.com/products/ea/index.html.
Accessed: 12.02.2020.
Tan, T. K., Raghunathan, A., and Jha, N. K. (2003). Soft-
ware architectural transformations: a new approach to
low energy embedded software. In Design, Automa-
tion, and Test in Europe Conference and Exhibition,
pages 1046–1051, Los Alamitos, CA. IEEE Computer
Society.
The MathWorks, Inc. (2021). MATLAB.
https://www.mathworks.com/products/matlab. Ac-
cessed: 12.02.2021.
Vuran, M. C., Salam, A., Wong, R., and Irmak, S. (2018).
Internet of underground things in precision agricul-
ture: Architecture and technology aspects. Ad Hoc
Networks, 81:160–173.
Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi,
M. (2014). Internet of things for smart cities. IEEE
Internet of Things journal, 1(1):22–32.
Zhou, H.-Y., Luo, D.-Y., Gao, Y., and Zuo, D.-C. (2011).
Modeling of node energy consumption for wireless
sensor networks. Wireless Sensor Network, 03(01):18–
23.
Zhu, Z., Olutunde Oyadiji, S., and He, H. (2014). En-
ergy awareness workflow model for wireless sensor
nodes. Wireless Communications and Mobile Comput-
ing, 14(17):1583–1600.
ICSOFT 2021 - 16th International Conference on Software Technologies
58