REFERENCES
Abdullah, F., Ward, R., 2016. Developing a general
extended technology acceptance model for E-learning
(GETAMEL) by analysing commonly used external
factors. Computers in Human Behavior, 56, 238–256.
Ajzen, I., Fishbein, M., 1980. Understanding attitudes and
predicting social behaviour, Prentice-Hall. Englewood
Cliffs, NJ.
Cimperman, M., Brenčič, M. M., Trkman, P., 2016.
Analyzing older users’ home telehealth services
acceptance behavior, applying an extended UTAUT
model. Int. J. Med. Inform. 90, 22–31.
Commission of the European Communities, 2001.
Communication from the Commission to the Council
and the European Parliament. The eLearning Action
Plan - Designing tomorrow's education. COM(2001)
172 final. Brussels.
Davis F., 1989. Perceived usefulness, perceived ease of use
and user acceptance of information technology, MIS
Quarterly, 13(3), 319–340.
Davis, F. D., Bagozzi, R. P., Warshaw, P. R., 1989. User
Acceptance of Computer Technology: A Comparison
of Two Theoretical Models. Management Science,
35(8), 982–1003.
Fernández-Cruz, F., Fernández-Díaz, M., 2016. Los
docentes de la generación Z y sus competencias
digitales. Comunicar, 46, 97-105.
Fishbein, M., Ajzen, I., 1975. Belief, attitude, intention, and
behavior: An introduction to theory and research,
Addison-Wesley. Reading, MA.
Fornell, C., Larcker, D. F., 1981. Evaluating Structural
Equation Models with Unobservable Variables and
Measurement Error. Journal of Marketing Research,
18(1), 39-50.
Gómez, M. A., Rodríguez, G., Ibarra, Mª S., 2013.
COMPES: Autoinforme sobre las competencias básicas
relacionadas con la evaluación de los estudiantes
universitarios, Estudios Sobre Educación, 24, 197-224.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E.,
2010. Multivariate Data Analysis, Pearson. New York,
7th edition.
Henseler, J., Ringle, C. M., Sarstedt, M., 2015. A new
criterion for assessing discriminant validity in variance-
based structural equation modeling. Journal of the
Academy of Marketing Science, 43(1), 115–135.
Henseler, J., Hubona, G., Ray, P. A., 2016. Using PLS path
modeling in new technology research: Updated
guidelines. Industrial Management & Data Systems,
116 (1), 2–20.
Hubalovsky, S., Hubalovska, M., Musilek, M., 2019.
Assessment of the influence of adaptive E-learning on
learning effectiveness of primary school pupils.
Computers in Human Behavior, 92, 691–705.
Johri, A., Teo, H. J., Lo, J., Dufour, M. Schram, A., 2014.
Millennial engineers: Digital media and information
ecology of engineering students. Computers in Human
Behavior, 33, 286-301.
Khaksar, S. M., Khosla, R., Singaraju, S. Slade, B., 2019.
Carer’s perception on social assistive technology
acceptance and adoption: moderating effects of
perceived risks, Behaviour & Information Technology,
40(4), 337-360.
Khalilzadeh, J., Ozturk, A. B. Bilgihan, A., 2017. Security-
related factors in extended UTAUT model for NFC
based mobile payment in the restaurant industry.
Computers in Human Behavior,70, 460–474.
Kline R. B., 2011, Principles and Practice of Structural
Equation Modeling, The Guilford Press. New York, 3
rd
edition.
Lam, L. W., 2012. Impact of competitiveness on
salespeople's commitment and performance. Journal of
Business Research, 65(9), 1328-1334.
Navaridas-Nalda, F., Clavel-San Emeterio, M. Fernández-
Ortiz, R. Arias-Oliva, M., 2020. The strategic influence
of school principal leadership in the digital
transformation of schools. Computers in Human
Behavior, 112, 106–481.
Nistor, N., Heymann, J. O., 2010. Reconsidering the role of
attitude in the TAM: An answer to Teo (2009). British
Journal of Educational Technology, 41(6), E142–E145.
Nunnally, J.C., 1978. Psychometric theory, McGraw-Hill.
New York, 2
nd
edition.
OECD, 2015. Students, computers and learning: Making
the connection. PISA. OECD Publishing.
Pérez, A., Rodríguez, M.J., 2016. Evaluación de las
competencias digitales autopercibidas del profesorado
de educación primaria en Castilla y León. Revista de
Investigación Educativa, 34 (2), 399-415.
Roosseell, Y., 2012. Lavaan: an R package for structural
equation modeling”, Journal of Statistical Software,
48(2), 1–36.
Santiago Campion, R., Navaridas Nalda, F., Repáraz
Abaitua, R., 2014. La escuela 2.0: La percepción del
docente en torno a su eficacia en los centros educativos
de La Rioja. Educación XX1, 17(1), 243-270.
Scherer, R., Siddiq, F., Teo, T., 2015. Becoming more
specific: Measuring and modeling teachers' perceived
usefulness of ICT in the context of teaching and
learning. Computers & Education, 88, 202–214.
Scherer, R., Siddiq, F. Tondeur, J., 2019. The technology
acceptance model (TAM): A meta-analytic structural
equation modeling approach to explaining teachers’
adoption of digital technology in education. Computers
& Education, 128, 13-35.
Scherer, R., Tondeur, J., Siddiq, F., Baran, E., 2018. The
importance of attitudes toward technology for pre-
service teachers' technological, pedagogical, and
content knowledge: Comparing structural equation
modeling approaches. Computers in Human Behavior.
Straub, D., Boudreau, M.-C., Gefen, D., 2004. Validation
guidelines for IS positivist research. Communications
of the Association for Information Systems, 13(1), 63
Straub, E. T., 2017. Understanding technology adoption:
Theory and future directions for informal learning.
Review of Educational Research, 79(2), 625-649.
UNESCO, 2008. Normas UNESCO sobre competencias en
TIC para docentes. http://goo.gl/pGPDGv
UNESCO, 2009. La Nueva Dinámica de la Educación
Superior y la Investigación Para el Cambio Social y el