Berk, V. and Fox, N. (2005). Process query systems for
network security monitoring. In Sensors, and Com-
mand, Control, Communications, and Intelligence
(C3I) Technologies for Homeland Security and Home-
land Defense IV, volume 5778, pages 520–530. Inter-
national Society for Optics and Photonics.
Cherry, E. C. (1953). Some experiments on the recognition
of speech, with one and with two ears. The Journal of
the acoustical society of America, 25(5):975–979.
Comon, P. and Jutten, C. (2010). Handbook of Blind Source
Separation: Independent component analysis and ap-
plications. Academic press.
Cybenko, G. and Berk, V. H. (2007). Process query sys-
tems. Computer, 40(1):62–70.
Dulac-Arnold, G., Mankowitz, D., and Hester, T. (2019).
Challenges of real-world reinforcement learning.
arXiv preprint arXiv:1904.12901.
Franc¸ois-Lavet, V., Henderson, P., Islam, R., Bellemare,
M. G., and Pineau, J. (2018). An introduction to deep
reinforcement learning.
Giani, A., Berk, V., Cybenko, G., and Hanover, N. (2005).
Covert channel detection using process query systems.
In proceedings of: FLoCon.
Ginsburg, S. (1959). Synthesis of minimal-state machines.
IRE Transactions on Electronic Computers, (4):441–
449.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014a). Generative adversarial nets. In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N., and Weinberger, K. Q., editors, Advances in Neu-
ral Information Processing Systems, volume 27, pages
2672–2680. Curran Associates, Inc.
Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014b). Ex-
plaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.
Haykin, S. and Chen, Z. (2005). The cocktail party prob-
lem. Neural computation, 17(9):1875–1902.
He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L., and Os-
tendorf, M. (2016). Deep reinforcement learning with
a natural language action space. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1621–1630.
Hughes, K. (2015a). Blind source separa-
tion on images with shogun. (Accessed
via Internet Web Archive) http://shogun-
toolbox.org/static/notebook/current/bss image.html.
Hughes, K. (2015b). Blind source separation
with the shogun machine learning toolbox.
https://nbviewer.jupyter.org/github/kevinhughes27/bs-
s jade/blob/master/bss jade.ipynb.
Hung, C.-C., Lillicrap, T., Abramson, J., Wu, Y., Mirza,
M., Carnevale, F., Ahuja, A., and Wayne, G. (2019).
Optimizing agent behavior over long time scales by
transporting value. Nature communications, 10(1):1–
12.
Kofidis, E. (2016). Blind source separation: Fundamentals
and recent advances (a tutorial overview presented at
sbrt-2001). arXiv preprint arXiv:1603.03089.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25:1097–1105.
Lee, D., Kim, J., Moon, W.-J., and Ye, J. C. (2019). Colla-
gan: Collaborative gan for missing image data impu-
tation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
2487–2496.
Luo, Y., Cai, X., Zhang, Y., Xu, J., and Yuan, X. (2018).
Multivariate time series imputation with generative
adversarial networks. In Proceedings of the 32nd In-
ternational Conference on Neural Information Pro-
cessing Systems, pages 1603–1614.
MathWorks (2020). Alexnet convolutional neural network.
https://www.mathworks.com/help/deeplearning/ref/a-
lexnet.html.
O’grady, P. D., Pearlmutter, B. A., and Rickard, S. T.
(2005). Survey of sparse and non-sparse methods in
source separation. International Journal of Imaging
Systems and Technology, 15(1):18–33.
Qian, Y.-m., Weng, C., Chang, X.-k., Wang, S., and Yu,
D. (2018). Past review, current progress, and chal-
lenges ahead on the cocktail party problem. Frontiers
of Information Technology & Electronic Engineering,
19(1):40–63.
Roblee, C., Berk, V., and Cybenko, G. (2005). Implement-
ing large-scale autonomic server monitoring using
process query systems. In Second International Con-
ference on Autonomic Computing (ICAC’05), pages
123–133. IEEE.
Schneider, F. B. (1990). The state machine approach: A
tutorial. Fault-tolerant distributed computing, pages
18–41.
Shapiro, K. L., Caldwell, J., and Sorensen, R. E. (1997).
Personal names and the attentional blink: A vi-
sual” cocktail party” effect. Journal of Experimen-
tal Psychology: Human Perception and Performance,
23(2):504.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.
Tariq, S., Lee, S., Kim, H., Shin, Y., and Woo, S. S. (2018).
Detecting both machine and human created fake face
images in the wild. In Proceedings of the 2nd interna-
tional workshop on multimedia privacy and security,
pages 81–87.
Wan, P., Hao, B., Li, Z., Zhou, L., and Zhang, M. (2016).
Time differences of arrival estimation of mixed inter-
ference signals using blind source separation based
on wireless sensor networks. IET Signal Processing,
10(8):924–929.
Zhang, Y., Zhou, B., Cai, X., Guo, W., Ding, X., and Yuan,
X. (2021). Missing value imputation in multivariate
time series with end-to-end generative adversarial net-
works. Information Sciences, 551:67–82.
Zhao, T. and Eskenazi, M. (2016). Towards end-to-end
learning for dialog state tracking and management us-
ing deep reinforcement learning. In Proceedings of
the 17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 1–10.
AI4EIoTs 2021 - Special Session on Artificial Intelligence for Emerging IoT Systems: Open Challenges and Novel Perspectives
380