niques: A survey. ACM Computing Surveys (CSUR),
52(6):1–28.
Apostolopoulos, T., Katos, V., Choo, K. R., and Patsakis,
C. (2021). Resurrecting anti-virtualization and anti-
debugging: Unhooking your hooks. Future Genera-
tion Computer Systems, 116:393–405.
Branco, R. R., Barbosa, G. N., and Neto, P. D. (2012). Sci-
entific but not academical overview of malware anti-
debugging, anti-disassembly and anti-vm technolo-
gies. In Blackhat USA.
Bulazel, A. and Yener, B. (2017). A survey on auto-
mated dynamic malware analysis evasion and counter-
evasion: PC, mobile, and web. In Proceedings of the
1st Reversing and Offensive-oriented Trends Sympo-
sium, page 2, New York, NY, USA. ACM, ACM.
Checkpoint Research (2020). Evasion techniques. https:
//evasions.checkpoint.com/.
Chen, X., Andersen, J., Mao, Z. M., Bailey, M., and
Nazario, J. (2008). Towards an understanding of anti-
virtualization and anti-debugging behavior in modern
malware. In 2008 IEEE International Conference on
Dependable Systems and Networks With FTCS and
DCC (DSN), pages 177–186. IEEE, IEEE.
Cono D’Elia, D., Coppa, E., Palmaro, F., and Cavallaro, L.
(2020). On the dissection of evasive malware. IEEE
Transactions on Information Forensics and Security,
15:2750–2765.
D’Elia, D. C., Coppa, E., Nicchi, S., Palmaro, F., and Cav-
allaro, L. (2019). Sok: Using dynamic binary instru-
mentation for security (and how you may get caught
red handed). In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Secu-
rity, pages 15–27.
Deng, X. and Mirkovic, J. (2018). Malware analysis
through high-level behavior. In 11th USENIX Work-
shop on Cyber Security Experimentation and Test
(CSET 18), Baltimore, MD. USENIX Association.
Forum, W. E. (2020). Wild wide web consequences of digi-
tal fragmentation. https://reports.weforum.org/global-
risks-report-2020/wild-wide-web/.
Gandotra, E., Bansal, D., and Sofat, S. (2014). Malware
analysis and classification: A survey. Journal of In-
formation Security, 2014.
Guan, L., Jia, S., Chen, B., Zhang, F., Luo, B., Lin, J., Liu,
P., Xing, X., and Xia, L. (2017). Supporting transpar-
ent snapshot for bare-metal malware analysis on mo-
bile devices. In Proceedings of the 33rd Annual Com-
puter Security Applications Conference, pages 339–
349, New York, NY, USA. ACM, ACM.
Huang, Q., Li, H., He, Y., Tai, J., and Jia, X. (2020). Pidica-
tors: An efficient artifact to detect various vms. In In-
ternational Conference on Information and Commu-
nications Security, pages 259–275. Springer.
(IC3), I. C. C. C. (2019). 2019 internet crime report. https:
//pdf.ic3.gov/2019 IC3Report.pdf.
Issa, A. (2012). Anti-virtual machines and emulations.
Journal in Computer Virology, 8(4):141–149.
Kirat, D. and Vigna, G. (2015). Malgene: Automatic ex-
traction of malware analysis evasion signature. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 769–
780, New York, NY, USA. ACM, ACM.
Kirat, D., Vigna, G., and Kruegel, C. (2011). Barebox: effi-
cient malware analysis on bare-metal. In Proceedings
of the 27th Annual Computer Security Applications
Conference, pages 403–412, New York, NY, USA.
ACM, ACM.
Kirat, D., Vigna, G., and Kruegel, C. (2014). Bare-
cloud: Bare-metal analysis-based evasive malware de-
tection. In USENIX Security Symposium, pages 287–
301, Berkeley, CA, USA. USENIX Association.
K
¨
uchler, A., Mantovani, A., Han, Y., Bilge, L., and
Balzarotti, D. (2021). Does every second count? time-
based evolution of malware behavior in sandboxes. In
Proceedings of the Network and Distributed System
Security Symposium, NDSS. The Internet Society.
Kumar, S. et al. (2020). An emerging threat fileless mal-
ware: a survey and research challenges. Cybersecu-
rity, 3(1):1–12.
Leguesse, Y., Vella, M., and Ellul, J. (2017). Androneo:
Hardening android malware sandboxes by predicting
evasion heuristics. In IFIP International Conference
on Information Security Theory and Practice, pages
140–152, Cham. Springer, Springer International Pub-
lishing.
Lit¸
˘
a, C. V., Cosovan, D., and Gavrilut¸, D. (2018). Anti-
emulation trends in modern packers: a survey on the
evolution of anti-emulation techniques in upa pack-
ers. Journal of Computer Virology and Hacking Tech-
niques, 14(2):107–126.
Martignoni, L., Paleari, R., Roglia, G. F., and Bruschi,
D. (2009). Testing CPU emulators. In Proceedings
of the Eighteenth International Symposium on Soft-
ware Testing and Analysis, ISSTA ’09, pages 261–
272, New York, NY, USA. ACM.
Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Cor-
betta, J., Kirat, D., Kruegel, C., and Vigna, G. (2015).
Baredroid: Large-scale analysis of android apps on
real devices. In Proceedings of the 31st Annual Com-
puter Security Applications Conference, pages 71–80,
New York, NY, USA. ACM, ACM.
Or-Meir, O., Nissim, N., Elovici, Y., and Rokach, L. (2019).
Dynamic malware analysis in the modern era—a state
of the art survey. ACM Computing Surveys (CSUR),
52(5):1–48.
Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis,
M., and Ioannidis, S. (2014). Rage against the virtual
machine: Hindering dynamic analysis of android mal-
ware. In Proceedings of the Seventh European Work-
shop on System Security, EuroSec ’14, pages 5:1–5:6,
New York, NY, USA. ACM.
Shi, H., Alwabel, A., and Mirkovic, J. (2014). Cardi-
nal pill testing of system virtual machines. In 23rd
USENIX Security Symposium (USENIX Security 14),
pages 271–285, San Diego, CA.
Shi, H., Mirkovic, J., and Alwabel, A. (2017). Handling
anti-virtual machine techniques in malicious software.
ACM Transactions on Privacy and Security (TOPS),
21(1):2:1–2:31.
Thomas, D. S. (2020). Cybercrime losses: An examination
of us manufacturing and the total economy.
Python and Malware: Developing Stealth and Evasive Malware without Obfuscation
135