the 17th World Congress The International Federation
of Automatic Control, pages 1066–1067.
Davis, L. (1985). Applying Adaptive Algorithms to
Epistatic Domains. In Proceedings of the 9th Inter-
national Joint Conference on Artificial Intelligence,
pages 162–164.
Deb, K. and Agrawal, R. B. (1995). Simulated Binary
Crossover for Continuous Search Space. Complex
Systems, 9:115–148.
Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000).
A fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization: NSGA-II. In Inter-
national conference on parallel problem solving from
nature, pages 849–858.
Deep, K., Singh, K. P., Kansal, M. L., and Mohan, C.
(2009). A real coded genetic algorithm for solv-
ing integer and mixed integer optimization problems.
Applied Mathematics and Computation, 212(2):505–
518.
Deflorian, M. and Zaglauer, S. (2011). Design of exper-
iments for nonlinear dynamic system identification.
IFAC Proceedings Volumes, 44(1):13179–13184.
Goldberg, D. E. and Deb, K. (1991). A Comparative Analy-
sis of Selection Schemes Used in Genetic Algorithms.
Foundations of genetic algorithms, 1:69–93.
Goldberg, D. E., Lingle, R., and Others (1985). Alleles,
loci, and the traveling salesman problem. In Pro-
ceedings of an international conference on genetic al-
gorithms and their applications, volume 154, pages
154–159.
Hartmann, B. (2013). Lokale Modellnetze zur Identifikation
und Versuchs- planung nichtlinearer Systeme. PhD
thesis, University of Siegen.
Hartmann, S. (1998). A Competitive Genetic Algorithm
for Resource-Constrained Project Scheduling. Naval
Research Logistics (NRL), 45:733–750.
Heinz, T. O. and Nelles, O. (2016). Vergleich von An-
regungssignalen f
¨
ur Nichtlineare Identifikationsauf-
gaben. In Hoffman, F., H
¨
ullermeier, E., and Mikut,
R., editors, Proceedings 26. Workshop Computational
Intelligence, pages 139–158. KIT Scientific Publish-
ing.
Heinz, T. O. and Nelles, O. (2017). Iterative Excitation Sig-
nal Design for Nonlinear Dynamic Black-Box Mod-
els. Procedia Computer Science, pages 1054–1061.
Heinz, T. O., Schillinger, M., Hartmann, B., and Nelles,
O. (2017). Excitation signal design for nonlinear dy-
namic systems with multiple inputs – A data distribu-
tion approach. In R
¨
opke, K. and G
¨
uhmann, C., edi-
tors, International Calibration Conference - Automo-
tive Data Analytics, Methods, DoE, pages 191–208.
expertVerlag.
Hoagg, J. B., Lacy, S. L., Babu
ˇ
ska, V., and Bernstein, D. S.
(2006). Sequential multisine excitation signals for
system identification of large space structures. In Pro-
ceedings of the American Control Conference, pages
418–423.
Holland, J. H. (1975). Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence.
Isermann, R. (1992). Identifikation dynamischer Systeme 1.
Springer Verlag.
Isermann, R. (2010). Elektronisches Management mo-
torischer Fahrzeugantriebe. Springer.
Joseph, V. R., Gul, E., and Ba, S. (2015). Maximum projec-
tion designs for computer experiments. Biometrika,
102(2):371–380.
Lin, W. Y., Lee, W. Y., and Hong, T. P. (2003). Adapt-
ing crossover and mutation rates in genetic algo-
rithms. Journal of Information Science and Engineer-
ing, 19:889–903.
Nelles, O. (2006). Axes-Oblique Partitioning Strategies for
Local Model Networks. In IEEE International Sympo-
sium on Intelligent Control, pages 2378–2383. IEEE.
Nelles, O. (2013). Nonlinear system identification: from
classical approaches to neural networks and fuzzy
models. Springer Science & Business Media.
Nelles, O. and Isermann, R. (1995). Identification of nonlin-
ear dynamic systems - classical methods versus radial
basis function networks. In Proceedings of the Ameri-
can Control Conference, volume 5, pages 3786–3790.
Nouri, N. M., Valadi, M., and Asgharian, J. (2018). Optimal
input design for hydrodynamic derivatives estimation
of nonlinear dynamic model of AUV. Nonlinear Dy-
namics, 92(2):139–151.
Peter, T. J. and Nelles, O. (2019). Fast and sim-
ple dataset selection for machine learning. at-
Automatisierungstechnik, 67(10):833–842.
Pintelon, R. and Schoukens, J. (2012). System identifica-
tion: a frequency domain approach, volume 478. John
Wiley & Sons.
Razali, N. M. and Geraghty, J. (2011). Genetic algorithm
performance with different selection strategiesin solv-
ing TSP. In Proceedings of the World Congress on
Engineering, volume 2, pages 1–6.
Rivera, D. E., Lee, H., Mittelmann, H. D., and Braun, M. W.
(2002). Constrained multisine input signals for plant-
friendly identification of chemical process systems.
IFAC Proceedings Volumes, 35(1):425–430.
Sivanandam S.N., D. S. (2008). Introduction to genetic al-
gorithms. Berlin: Springer.
Syswerda, G. (1991). Scheduling optimization using ge-
netic algorithms. Handbook of genetic algorithms.
Tietze, N. (2015). Model-based calibration of engine con-
trol units using gaussian process regression. PhD the-
sis, Technische Universit
¨
at Darmstadt.
Genetic Optimization of Excitation Signals for Nonlinear Dynamic System Identification
145