Future research will include adding variance to
the supplier features estimates. If a certain factor is
important for the enterprise, then it can be
distinguished from the rest.
REFERENCES
Aggarwal, C.C. 2003. Towards systematic design of
distance functions for data mining applications. In:
Proceeding of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
pp. 9-18, New York, USA, August.
Aggarwal, C.C. Reddy, C.K. 2013. Data Clustering:
Algorithms and Applications. CRC Press.
Batra, A. 2011. Analysis and Approach: K-Means and K-
Medoids Data Mining Algorithms. In: ICACCT, 5th
IEEE International Conference on Advanced
Computing & Communication Technologies. ISBN 81-
87885-03-3 pp. 274-279.
D. H. Ballard, 1981. Generalizing the Hough transform to
detect arbitrary shapes. Pattern Recognition, 13:111–
122.
Dermoudy, J. Kang, Byeong-Ho. Bhattacharyya, D. Jeon,
Seung-Hwan. Farkhod, A.A. 2009. Process of
Extracting Uncover Patterns from Data: A Review.
International Journal of Database Theory and
Application, 2(2).
Duda, R.O. Hart, P.E. 1973. Pattern Classification and
Scene Analysis. Vol. 3, Wiley, NewYork, USA.
G. Stockmann, 1987. Object recognition and localization
via pose clustering. CVGIP, 40:361–387.
G. Stockmann, S. Kopstein, and S. Benett, 1982. Matching
images to models for registration and object detection
via clustering. IEEE Trans. Pattern Anal. Mach. Intell.,
4:229–241.
Galdi, P. Napolitano, F. Tagliafe, R. 2014. A comparison
between Affinity Propagation and assessment-based
methods in finding the best number of clusters. In:
Proceedings of CIBB.
Halkidi, Maria & Vazirgiannis, Michalis. (2001).
Clustering Validity Assessment: Finding the optimal
partitioning of a data set. Proceedings - IEEE
International Conference on Data Mining, ICDM. 187-
194. 10.1109/ICDM.2001.989517
J. Illingworth and J. Kittler, 1988. A survey of the Hough
transforms. CVGIP, 44:87–116.
Jain, A.K. Dubes, R.C. 1988. Algorithms for Clustering
Data. Prentice Hall, Upper Saddle River, NJ, USA.
Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei
Xu, 1996. "A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with
Noise", Proceedings of 2nd Int. Conf. On Knowledge
Discovery and Data Mining, Portland, OR, pp. 226-
231.
Michael J. A. Berry, Gordon Linoff, 1996 Data Mining
Techniques For marketing, Sales and Customer
Support. John Willey & Sons, Inc.
Microsoft Support, 2019. “The project triangle”. URL:
https://support.microsoft.com/en-us/office/the-project-
triangle-8c892e06-d761-4d40-8e1f-17b33fdcf810?ui=
en-us&rs=en-us&ad=us
Moiane, André & Machado, Álvaro. (2018). Evaluation of
the clustering performance of affinity propagation
algorithm considering the influence of preference
parameter and damping factor. Boletim de Ciências
Geodésicas. 24. 426-441. 10.1590/s1982-
21702018000400027
S. Moss, R. C. Wilson, and E. R. Hancock, 1999. A mixture
model for poses clustering. Patt. Recogn. Let.,
20:1093–1101.
Sudipto Guha, Rajeev Rastogi, Kyueseok Shim, 1998.
"CURE: An Efficient Clustering Algorithm for Large
Databases", Published in the Proceedings of the ACM
SIGMOD Conference.
Ulrich Hillenbrandm 2007. Consistent Parameter
Clustering: Definition and Analysis, Pattern
Recognition Letters 28, 1112–1122
Usama Fayyad, Ramasamy Uthurusamy. November 1996.
"Data Mining and Knowledge Discovery in Databases",
Communications of the ACM. Vol.39, No11.
Usama M. Fayyad, Gregory Piatesky-Shapiro, Padhraic
Smuth and Ramasamy Uthurusamy. 1996. “Advances
in Knowledge Discovery and Data Mining”, AAAI
Press.
Veit Schwämmle, Ole Nørregaard Jensen, 2010. A simple
and fast method to determine the parameters for fuzzy
c–means cluster analysis, Bioinformatics, Volume 26,
Issue 22, Pages 2841–2848, https://doi.org/10.1093/
bioinformatics/btq534
Zhang, K. Gu, X. 2014. An Affinity Propagation Clustering
Algorithm for Mixed Numeric and Categorical
Datasets. Mathematical Problems in Engineering, 2014,
pp. 1-8.
Noufa Alnajran, Keeley Crockett, David McLean, Annabel
Latham Cluster Analysis of Twitter Data: A Review of
Algorithms (DOI:10.5220/0006202802390249),
Conference: 9th International Conference on Agents
and Artificial Intelligence
R. Smíšek et al., "SVM based ECG classification using
rhythm and morphology features, cluster analysis and
multilevel noise estimation," 2017 Computing in
Cardiology (CinC), 2017, pp. 1-4, doi: 10.22489/
CinC.2017.172-200.
Yaakov HaCohen-Kerner, Yarden Tzach, Ori Asis Gender
Clustering of Blog Posts using Distinguishable Features
Published in KDIR 2016 Computer Science (DOI:
10.5220/0006077403840391).
ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics