sigmoidal function. Mathematics of Control, Signals,
and Systems, 2(4):303–314.
Dutta, S., Chen, X., and Sankaranarayanan, S. (2019).
Reachability analysis for neural feedback systems us-
ing regressive polynomial rule inference. In Pro-
ceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pages
157–168.
Dutta, S., Jha, S., Sankaranarayanan, S., and Tiwari, A.
(2018). Output range analysis for deep feedforward
neural networks. In NASA Formal Methods, volume
10811 of Lecture Notes in Computer Science, pages
121–138. Springer International Publishing.
Fazlyab, M., Morari, M., and Pappas, G. J. (2020). Safety
verification and robustness analysis of neural net-
works via quadratic constraints and semidefinite pro-
gramming. IEEE Transactions on Automatic Control
(early access). doi: 10.1109/TAC.2020.3046193.
Fazlyab, M., Robey, A., Hassani, H., Morari, M., and Pap-
pas, G. J. (2019). Efficient and accurate estimation of
lipschitz constants for deep neural networks. In Ad-
vances in Neural Information processing Systems 32,
pages 11423–11434.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. The MIT Press.
Gr
¨
une, L. (2020). Computing Lyapunov functions using
deep neural networks. arXiv e-print:2005.08965.
Hagan, M. T. and Menhaj, M. B. (1994). Training feedfor-
ward networks with the marquardt algorithm. IEEE
Transactions on Neural Networks, 5(6):989–993.
Hornik, K., Stinchcombe, M., and White, H. (1989). Multi-
layer feedforward networks are universal approxima-
tors. Neural Networks, 2(5):359–366.
Hu, H., Fazlyab, M., Morari, M., and Pappas, G. J. (2020).
Reach-sdp: Reachability analysis of closed-loop sys-
tems with neural network controllers via semidefinite
programming. In 59th IEEE Conference on Decision
and Control, pages 5929–5934.
Huang, C., Fan, J., Li, W., Chen, X., and Zhu, Q. (2019).
Reachnn: Reachability analysis of neural-network
controlled systems. ACM Transactions on Embedded
Computing Systems, 18(5s):1–22.
Ivanov, R., Weimer, J., Alur, R., Pappas, G. J., and Lee,
I. (2019). Verisig: Verifying safety properties of hy-
brid systems with neural network controllers. In Pro-
ceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, pages
169–178.
Khalil, H. K. (2002). Nonlinear systems. Prentice Hall.
Khalil, H. K. (2015). Nonlinear control. Pearson.
Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Ad-
versarial examples in the physical world. arXiv e-
print:1607.02533.
Lewis, F. L. and Liu, D., editors (2013). Reinforcement
learning and approximate dynamic programming for
feedback control. IEEE Press and Wiley.
Liu, D., Wei, Q., Wang, D., Yang, X., and Li, H. (2017).
Adaptive Dynamic Programming with Applications in
Optimal Control. Springer International Publishing.
Markolf, L., Eilbrecht, J., and Stursberg, O. (2020). Tra-
jectory planning for autonomous vehicles combin-
ing nonlinear optimal control and supervised learning.
IFAC-PapersOnLine, 53(2):15608–15614.
Patterson, M. A. and Rao, A. V. (2014). Gpops-ii. ACM
Transactions on Mathematical Software, 41(1):1–37.
Perkins, T. J. and Barto, A. G. (2002). Lyapunov design
for safe reinforcement learning. Journal of Machine
Learning Research, 3:803–832.
Petridis, V. and Petridis, S. (2006). Construction of neu-
ral network based lyapunov functions. In The 2006
IEEE International Joint Conference on Neural Net-
work Proceedings, pages 5059–5065.
Richards, S. M., Berkenkamp, F., and Krause, A. (2018).
The lyapunov neural network: Adaptive stability cer-
tification for safe learning of dynamical systems. In
Proceedings of The 2nd Conference on Robot Learn-
ing, volume 87, pages 466–476.
Rump, S. (1999). INTLAB - INTerval LABoratory. In
Csendes, T., editor, Developments in Reliable Com-
puting, pages 77–104. Kluwer Academic Publishers.
Sutton, R. S. and Barto, A. (2018). Reinforcement Learn-
ing: An Introduction. The MIT Press.
Stability Analysis for State Feedback Control Systems Established as Neural Networks with Input Constraints
155