8 CONCLUSION AND FUTURE
SCOPE
In the proposed work novel fractional order model is
presented for the quadrotor which is more real for
practical applications. The fractional order parame-
ters achieves the tracking accuracy of the controller.
The comparative study has been done with the pro-
posed method with the existing second twisting con-
troller in terms of chattering attenuation and con-
troller effort. The future scope of the present work
is to design controller for multiagent quadrotor sys-
tems in presence of communication bandwidth limi-
tation using fractional order theory. The present work
is just a proof of the concept to be validated on more
complex systems.
REFERENCES
Aubry, M., Maturana, D., Efros, A. A., Russell, B. C., and
Sivic, J. (2014). Seeing 3d chairs: exemplar part-
based 2d-3d alignment using a large dataset of cad
models. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3762–
3769.
Boiko, I. and Fridman, L. (2005). Analysis of chattering in
continuous sliding-mode controllers. IEEE transac-
tions on automatic control, 50(9):1442–1446.
Cajo, R., Mac, T. T., Plaza, D., Copot, C., De Keyser, R.,
and Ionescu, C. (2019). A survey on fractional order
control techniques for unmanned aerial and ground
vehicles. IEEE Access, 7:66864–66878.
Chen, L., Saikumar, N., and HosseinNia, S. H. (2019).
Development of robust fractional-order reset control.
IEEE Transactions on Control Systems Technology,
28(4):1404–1417.
Cohen, M. R., Abdulrahim, K., and Forbes, J. R. (2020).
Finite-horizon lqr control of quadrotors on se 2(3).
IEEE Robotics and Automation Letters, 5(4):5748–
5755.
Giusti, A., Guzzi, J., Cires¸an, D. C., He, F.-L., Rodr
´
ıguez,
J. P., Fontana, F., Faessler, M., Forster, C., Schmidhu-
ber, J., Di Caro, G., et al. (2015). A machine learning
approach to visual perception of forest trails for mo-
bile robots. IEEE Robotics and Automation Letters,
1(2):661–667.
Hua, C., Chen, J., and Guan, X. (2019). Fractional-
order sliding mode control of uncertain quavs with
time-varying state constraints. Nonlinear Dynamics,
95(2):1347–1360.
Izaguirre-Espinosa, C., Mu
˜
noz-V
´
azquez, A.-J., S
´
anchez-
Orta, A., Parra-Vega, V., and Fantoni, I. (2018).
Fractional-order control for robust position/yaw track-
ing of quadrotors with experiments. IEEE Trans-
actions on Control Systems Technology, 27(4):1645–
1650.
Labbadi, M., Nassiri, S., Bousselamti, L., Bahij, M., and
Cherkaoui, M. (2019). Fractional-order fast termi-
nal sliding mode control of uncertain quadrotor uav
with time-varying disturbances. In 2019 8th Inter-
national Conference on Systems and Control (ICSC),
pages 417–422. IEEE.
Liu, H., Li, D., Zuo, Z., and Zhong, Y. (2016). Robust
three-loop trajectory tracking control for quadrotors
with multiple uncertainties. IEEE Transactions on In-
dustrial Electronics, 63(4):2263–2274.
Mogili, U. R. and Deepak, B. (2018). Review on application
of drone systems in precision agriculture. Procedia
computer science, 133:502–509.
Odibat, Z. (2006). Approximations of fractional integrals
and caputo fractional derivatives. Applied Mathemat-
ics and Computation, 178(2):527–533.
Oliva-Palomo, F., Mu
˜
noz-V
´
azquez, A. J., S
´
anchez-Orta, A.,
Parra-Vega, V., Izaguirre-Espinosa, C., and Castillo,
P. (2019). A fractional nonlinear pi-structure con-
trol for robust attitude tracking of quadrotors. IEEE
Transactions on Aerospace and Electronic Systems,
55(6):2911–2920.
R
´
ıos, H., Falc
´
on, R., Gonz
´
alez, O. A., and Dzul, A.
(2018). Continuous sliding-mode control strategies
for quadrotor robust tracking: Real-time applica-
tion. IEEE Transactions on Industrial Electronics,
66(2):1264–1272.
Shi, X., Cheng, Y., Yin, C., Zhong, S., Huang, X., Chen,
K., and Qiu, G. (2020). Adaptive fractional-order smc
controller design for unmanned quadrotor helicopter
under actuator fault and disturbances. Ieee Access,
8:103792–103802.
Shtessel, Y. B., Moreno, J. A., and Fridman, L. M. (2017).
Twisting sliding mode control with adaptation: Lya-
punov design, methodology and application. Automat-
ica, 75:229–235.
Singh, P., Gupta, S., Behera, L., Verma, N. K., and Naha-
vandi, S. (2020). Perching of nano-quadrotor using
self-trigger finite-time second-order continuous con-
trol. IEEE Systems Journal.
Wang, H., Ye, X., Tian, Y., Zheng, G., and Christov, N.
(2016). Model-free–based terminal smc of quadro-
tor attitude and position. IEEE Transactions on
Aerospace and Electronic Systems, 52(5):2519–2528.
Weidong, Z., Pengxiang, Z., Changlong, W., and Min, C.
(2015). Position and attitude tracking control for a
quadrotor uav based on terminal sliding mode con-
trol. In 2015 34th Chinese control conference (CCC),
pages 3398–3404. IEEE.
Xiong, J.-J. and Zhang, G. (2016). Sliding mode control for
a quadrotor uav with parameter uncertainties. In 2016
2nd International Conference on Control, Automation
and Robotics (ICCAR), pages 207–212. IEEE.
Yu, G., Cabecinhas, D., Cunha, R., and Silvestre, C. (2019).
Nonlinear backstepping control of a quadrotor-slung
load system. IEEE/ASME Transactions on Mecha-
tronics, 24(5):2304–2315.
Fractional Order Tracking Control of Unmanned Aerial Vehicle in Presence of Model Uncertainties and Disturbances
281