in Cambodia using the Google Earth Engine cloud-
computing platform. Remote Sensing, 11(1514), 1–30.
https://doi.org/10.3390/rs11131514
Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D.
(2010). Detecting trend and seasonal changes in
satellite image time series. Remote Sensing of
Environment, 114(1), 106–115. https://doi.org/10.10
16/j.rse.2009.08.014
Verhegghen, A., Bontemps, S., & Defourny, P. (2014). A
global NDVI and EVI reference data set for land-
surface phenology using 13 years of daily SPOT-
VEGETATION observations. International Journal of
Remote Sensing, 35(7), 2440–2471. https://doi.org/
10.1080/01431161.2014.883105
VITO. (2020). proba VEGETATION: News. https://proba-
v.vgt.vito.be/en/news/news
Vrieling, A., Meroni, M., Darvishzadeh, R., Skidmore, A.
K., Wang, T., Zurita-Milla, R., Oosterbeek, K.,
O’Connor, B., & Paganini, M. (2018). Vegetation
phenology from Sentinel-2 and field cameras for a
Dutch barrier island. Remote Sensing of Environment,
215(March 2018), 517–529. https://doi.org/10.1016/
j.rse.2018.03.014
Wang, X., Dannenberg, M. P., Yan, D., Jones, M. O.,
Kimball, J. S., Moore, D. J. P., van Leeuwen, W. J. D.,
Didan, K., & Smith, W. K. (2020). Globally Consistent
Patterns of Asynchrony in Vegetation Phenology
Derived From Optical, Microwave, and Fluorescence
Satellite Data. Journal of Geophysical Research:
Biogeosciences, 125(7), 1–15. https://doi.org/10.1029/
2020JG005732
Wang, Y., Zhao, J., Zhou, Y., & Zhang, H. (2012).
Variation and trends of landscape dynamics, land
surface phenology and net primary production of the
Appalachian Mountains. Journal of Applied Remote
Sensing, 6, 061708. https://doi.org/10.1117/1.jrs.6.0
61708
Wolters, E., Swinnen, E., Toté, C., & Sterckx, S. (2016).
SPOT-VGT Collection 3 - Product User Manual (1).
http://www.spot-
vegetation.com/pages/SPOT_VGT_PUM_v1.0.pdf
Workie, T. G., & Debella, H. J. (2018). Climate change and
its effects on vegetation phenology across ecoregions of
Ethiopia. Global Ecology and Conservation, 13, 1–13.
https://doi.org/10.1016/j.gecco.2017.e00366
Wu, C., Peng, D., Soudani, K., Siebicke, L., Gough, C. M.,
Arain, M. A., Bohrer, G., Lafleur, P. M., Peichl, M.,
Gonsamo, A., Xu, S., Fang, B., & Ge, Q. (2017). Land
surface phenology derived from normalized difference
vegetation index (NDVI) at global FLUXNET sites.
Agricultural and Forest Meteorology, 233, 171–182.
https://doi.org/10.1016/j.agrformet.2016.11.193
Wunderle, S., & Neuhaus, C. (2020). AVHRR Master Data
Set Handbook - Deliverable 16 (WP 7) (ESA-IPL-POE-
SBo-sp-RFP-2016-502; 1, Vol. 16). https://earth.
esa.int/eogateway/documents/20142/37627/AVHRR-
Handbook.pdf
Yan, D., Zhang, X., Nagai, S., Yu, Y., Akitsu, T., Nasahara,
K. N., Ide, R., & Maeda, T. (2019). Evaluating land
surface phenology from the Advanced Himawari
Imager using observations from MODIS and the
Phenological Eyes Network. International Journal of
Applied Earth Observation and Geoinformation,
79(May 2018), 71–83. https://doi.org/10.1016/j.jag.20
19.02.011
Yan, D., Zhang, X., Yu, Y., & Guo, W. (2017).
Characterizing land cover impacts on the responses of
land surface phenology to the rainy season in the congo
basin. Remote Sensing, 9(5). https://doi.org/10.3390/
rs9050461
Yuan, H., Wu, C., Gu, C., & Wang, X. (2020). Evidence for
satellite observed changes in the relative influence of
climate indicators on autumn phenology over the
Northern Hemisphere. Global and Planetary Change,
187(July 2019), 103131. https://doi.org/10.1016/
j.gloplacha.2020.103131
Zeng, L., Wardlow, B. D., Xiang, D., Hu, S., & Li, D.
(2020). A review of vegetation phenological metrics
extraction using time-series, multispectral satellite data.
Remote Sensing of Environment, 237(November 2018),
111511. https://doi.org/10.1016/j.rse.2019.111511
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., &
Schneider, A. (2004). The footprint of urban climates
on vegetation phenology. Geophysical Research
Letters, 31(12), 10–13. https://doi.org/10.1029/2004GL
020137
Zhang, X., Jayavelu, S., Liu, L., Friedl, M. A., Henebry, G.
M., Liu, Y., Schaaf, C. B., Richardson, A. D., & Gray,
J. (2018). Evaluation of land surface phenology from
VIIRS data using time series of PhenoCam imagery.
Agricultural and Forest Meteorology, 256–257, 137–
149. https://doi.org/10.1016/j.agrformet.2018.03.003
Zhang, X., Liu, L., Liu, Y., Jayavelu, S., Wang, J., Moon,
M., Henebry, G. M., Friedl, M. A., & Schaaf, C. B.
(2018). Generation and evaluation of the VIIRS land
surface phenology product. Remote Sensing of
Environment, 216(July), 212–229.
https://doi.org/10.1016/j.rse.2018.06.047
Zhang, X., Liu, L., & Yan, D. (2017). Comparisons of
global land surface seasonality and phenology derived
from AVHRR, MODIS, and VIIRS data. Journal of
Geophysical Research: Biogeosciences, 122(6), 1506–
1525. https://doi.org/10.1002/2017JG003811
Zhang, X., Tarpley, D., & Sullivan, J. T. (2007). Diverse
responses of vegetation phenology to a warming
climate. Geophysical Research Letters, 34(19), 1–5.
https://doi.org/10.1029/2007GL031447
Zhu, X., Chen, J., Gao, F., Chen, X., & Masek, J. G. (2010).
An enhanced spatial and temporal adaptive reflectance
fusion model for complex heterogeneous regions.
Remote Sensing of Environment, 114(11), 2610–2623.
https://doi.org/10.1016/j.rse.2010.05.032