Gagie, T. (2018). Practical dynamic de bruijn graphs.
Bioinformatics, 34(24):4189–4195.
dos Santos Mello, R., Bogorny, V., Alvares, L. O., Santana,
L. H. Z., Ferrero, C. A., Frozza, A. A., Schreiner,
G. A., and Renso, C. (2019). Master: A multi-
ple aspect view on trajectories. Transactions in GIS,
23:805–822.
Fujishige, Y., Nakashima, Y., Inenaga, S., Bannai, H., and
Takeda, M. (2019). An improved data structure for
left-right maximal generic words problem. In Pro-
ceedings of International Symposium on Algorithms
and Computation, ISAAC 2019, volume 149, pages
40:1–40:12.
Gao, C., Zhao, Y., Wu, R., Yang, Q., and Shao, J. (2019).
Semantic trajectory compression via multi-resolution
synchronization-based clustering. Knowledge-Based
Systems, 174:177–193.
Gog, S., Beller, T., Moffat, A., and Petri, M. (2014). From
theory to practice: Plug and play with succinct data
structures. In Proceedings of International Sympo-
sium on Experimental Algorithms, SEA 2014, pages
326–337. Springer International Publishing.
Larsson, N. J. and Moffat, A. (1999). Offline dictionary-
based compression. In Proceedings of the Data Com-
pression Conference, DCC 1999, pages 296–305.
Mountain, D. and Raper, J. (2001). Modelling human
spatio-temporal behaviour: a challenge for location
based services. In Proceedings of the International
Conference on GeoComputation, pages 65–74.
Munro, J. I. (1996). Tables. In Proceedings of the Con-
ference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 1996, volume
1180, pages 37–42.
Navarro, G. (2016). Compact Data Structures: A Practi-
cal Approach. Cambridge University Press, USA, 1st
edition.
Okanohara, D. and Sadakane, K. (2007). Practical entropy-
compressed rank/select dictionary. In Proceedings of
the Meeting on Algorithm Engineering & Expermi-
ments (ALENEX 2007), pages 60–70.
Parent, C., Spaccapietra, S., Renso, C., Andrienko, G. L.,
Andrienko, N. V., Bogorny, V., Damiani, M. L.,
Gkoulalas-Divanis, A., de Mac
ˆ
edo, J. A. F., Pelekis,
N., Theodoridis, Y., and Yan, Z. (2013). Semantic
trajectories modeling and analysis. ACM Computing
Surveys, 45(4):42:1–42:32.
Poushter, J. (2019). Pew research center: Smartphone own-
ership and internet usage continues to climb in emerg-
ing economies.
Raman, R., Raman, V., and Rao, S. (2002). Succinct in-
dexable dictionaries with applications to encoding k-
ary trees and multisets. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA 2002),
pages 233–242.
Schmid, F., Richter, K., and Laube, P. (2009). Seman-
tic trajectory compression. In Proceedings of the
Advances in Spatial and Temporal Databases Inter-
national Symposium, SSTD 2009, volume 5644 of
Lecture Notes in Computer Science, pages 411–416.
Springer.
Song, R., Sun, W., Zheng, B., and Zheng, Y. (2014).
PRESS: A novel framework of trajectory compression
in road networks. Proceedings of the VLDB Endow-
ment, 7(9):661–672.
Wyffels, J., De Brabanter, J., Crombez, P., Verhoeve,
P., Nauwelaers, B., and De Strycker, L. (2014).
Distributed, signal strength-based indoor localiza-
tion algorithm for use in healthcare environments.
IEEE Journal of Biomedical and Health Informatics,
18(6):1887–1893.
Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., and
Aberer, K. (2013). Semantic trajectories: Mobility
data computation and annotation. ACM Transactions
on Intelligent Systems and Technology, 4(3):49:1–
49:38.
An Efficient Representation of Enriched Temporal Trajectories
59