Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. (2019). BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding.
arXiv:1810.04805 [cs]. arXiv: 1810.04805.
Eberts, M. and Ulges, A. (2019). Span-based Joint En-
tity and Relation Extraction with Transformer Pre-
training. arXiv:1909.07755 [cs]. arXiv: 1909.07755.
Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P.,
Liu, N. F., Peters, M., Schmitz, M., and Zettlemoyer,
L. S. (2017). Allennlp: A deep semantic natural lan-
guage processing platform.
Hendrickx, I., Kim, S. N., Kozareva, Z., Nakov, P.,
Ó Séaghdha, D., Padó, S., Pennacchiotti, M., Ro-
mano, L., and Szpakowicz, S. (2010). SemEval-2010
Task 8: Multi-Way Classification of Semantic Rela-
tions between Pairs of Nominals. In Proceedings of
the 5th International Workshop on Semantic Evalua-
tion, pages 33–38, Uppsala, Sweden. Association for
Computational Linguistics.
Huang, Z., Xu, W., and Yu, K. (2015). Bidirec-
tional LSTM-CRF Models for Sequence Tagging.
arXiv:1508.01991 [cs]. arXiv: 1508.01991.
Kim, J.-D., Pyysalo, S., Ohta, T., Bossy, R., Nguyen, N.,
and Tsujii, J. (2011a). Overview of BioNLP shared
task 2011. In Proceedings of BioNLP Shared Task
2011 Workshop, pages 1–6, Portland, Oregon, USA.
Association for Computational Linguistics.
Kim, J.-D., Wang, Y., Takagi, T., and Yonezawa, A.
(2011b). Overview of Genia event task in BioNLP
shared task 2011. In Proceedings of BioNLP Shared
Task 2011 Workshop, pages 7–15, Portland, Oregon,
USA. Association for Computational Linguistics.
Lai, P.-T. and Lu, Z. (2021). BERT-GT: Cross-sentence n
-ary relation extraction with BERT and graph trans-
former. Bioinformatics.
Li, C. and Tian, Y. (2020). Downstream Model Design of
Pre-trained Language Model for Relation Extraction
Task. arXiv:2004.03786 [cs]. arXiv: 2004.03786 ver-
sion: 1.
Liu, Y., Li, A., Huang, J., Zheng, X., Wang, H., Han, W.,
and Wang, Z. (2019). Joint Extraction of Entities and
Relations Based on Multi-label Classification. In 2019
IEEE Fourth International Conference on Data Sci-
ence in Cyberspace (DSC), pages 106–111.
Loshchilov, I. and Hutter, F. (2019). Decoupled Weight
Decay Regularization. arXiv:1711.05101 [cs, math].
arXiv: 1711.05101.
May, P. and Reißel, P. (2020). German electra uncased.
Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Dis-
tant supervision for relation extraction without labeled
data. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 2 - ACL-IJCNLP ’09,
volume 2, page 1003, Suntec, Singapore. Association
for Computational Linguistics.
Mountassir, A., Benbrahim, H., and Berrada, I. (2012). An
empirical study to address the problem of unbalanced
data sets in sentiment classification. In 2012 IEEE
International Conference on Systems, Man, and Cy-
bernetics (SMC), pages 3298–3303.
Peng, N., Poon, H., Quirk, C., Toutanova, K., and Yih, W.-
t. (2017). Cross-Sentence N-ary Relation Extraction
with Graph LSTMs. Transactions of the Association
for Computational Linguistics, 5:101–115.
Pennington, J., Socher, R., and Manning, C. (2014). GloVe:
Global vectors for word representation. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–
1543, Doha, Qatar. Association for Computational
Linguistics.
Roller, R., Rethmeier, N., Thomas, P., Hübner, M., Uszko-
reit, H., Staeck, O., Budde, K., Halleck, F., and
Schmidt, D. (2018). Detecting Named Entities and
Relations in German Clinical Reports. In Rehm, G.
and Declerck, T., editors, Language Technologies for
the Challenges of the Digital Age, Lecture Notes in
Computer Science, pages 146–154, Cham. Springer
International Publishing.
Schiersch, M., Mironova, V., Schmitt, M., Thomas, P.,
Gabryszak, A., and Hennig, L. (2018). A Ger-
man Corpus for Fine-Grained Named Entity Recog-
nition and Relation Extraction of Traffic and Industry
Events. page 8.
Tsujii, J., Kim, J.-D., and Pyysalo, S., editors (2011).
Proceedings of BioNLP Shared Task 2011 Workshop,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.
Viera, A. J., Garrett, J. M., et al. (2005). Understanding in-
terobserver agreement: the kappa statistic. Fam med,
37(5):360–363.
Wadden, D., Wennberg, U., Luan, Y., and Hajishirzi, H.
(2019). Entity, Relation, and Event Extraction with
Contextualized Span Representations. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5784–5789, Hong
Kong, China. Association for Computational Linguis-
tics.
Xiang, W. and Wang, B. (2019). A Survey of Event Ex-
traction From Text. IEEE Access, 7:173111–173137.
Conference Name: IEEE Access.
Xu, F., Uszkoreit, H., Li, H., Adolphs, P., and Cheng, X.
(2013). Domain Adaptive Relation Extraction for Se-
mantic Web.
Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., and Xu,
B. (2017). Joint Extraction of Entities and Relations
Based on a Novel Tagging Scheme. arXiv:1706.05075
[cs]. arXiv: 1706.05075.
DeLTA 2021 - 2nd International Conference on Deep Learning Theory and Applications
156