from a slot in the parking lot to the road. Finally, in
the third scenario, the car is already inside the
parking lot and it travels backward until the parking
slot. As the video shows, our self-driving car
operates appropriately in the real world with PPUE.
6 CONCLUSIONS
We presented a path planner for unstructured urban
environments (PPUE) for our or any other self-
driving car. PPUE computes smooth and safe paths
that obey the kinematic constraints of the vehicle in
an amount of time suitable for real world operation.
Compared with related works, PPUE differs in its
car’s collision model and in its use of an obstacle
distance map instead of an occupancy grid map –
these improvements allow for faster path
computation.
As directions for future works, we plan to extend
PPUE for allowing its use with semi-trailer trucks.
ACKNOWLEDGEMENTS
This study was financed in part by Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior –
Brasil (CAPES) – Finance Code 001; Conselho
Nacional de Desenvolvimento Científico e
Tecnológico - Brasil (CNPq) - grants 310330/2020-
3, 133864/2019-7 and 311654/2019-3; and
Fundação de Amparo à Pesquisa do Espírito Santo -
Brasil (FAPES) – grants 75537958 and 84412844.
REFERENCES
Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P.,
Cardoso, V. B., Forechi, A., Jesus, L. F. R., Berriel, R.
F., Paixão, T. M., Mutz, F., Oliveira-Santos, T., and
De Souza, A. F. (2020). Self-driving cars: A survey.
Expert Systems with Applications, 113816.
Cardoso, V., Oliveira, J., Teixeira, T., Badue, C., Mutz, F.,
Oliveira-Santos, T., Veronese, L., and De Souza, A. F.
(2017, May). A model-predictive motion planner for
the IARA autonomous car. In 2017 IEEE
International Conference on Robotics and Automation
(ICRA) (pp. 225-230). IEEE.
Chu, K., Kim, J., Jo, K., and Sunwoo, M. (2015). Real-
time path planning of autonomous vehicles for
unstructured road navigation. International Journal of
Automotive Technology, 16(4), 653-668.
Dolgov, D., Thrun, S., Montemerlo, M., and Diebel, J.
(2010). Path planning for autonomous vehicles in
unknown semi-structured environments. The
international journal of robotics research, 29(5), 485-
501.
Elizondo-Leal, J. C., Parra-González, E. F., and Ramírez-
Torres, J. G. (2013). The exact Euclidean distance
transform: a new algorithm for universal path
planning. International Journal of Advanced Robotic
Systems, 10(6), 266.
Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman,
G., Alken, P., Booth, M., and Rossi, F. (2009). GNU
scientific library Reference Manual (3rd Ed). Network
Theory Limited.
Ghosh, D., Nandakumar, G., Narayanan, K., Honkote, V.,
and Sharma, S. (2019, May). Kinematic constraints
based Bi-directional RRT (KB-RRT) with
parameterized trajectories for robot path planning in
cluttered environment. In 2019 International
Conference on Robotics and Automation (ICRA) (pp.
8627-8633). IEEE.
Guidolini, R., Badue, C., Berger, M., de Paula Veronese,
L., and De Souza, A. F. (2016, November). A simple
yet effective obstacle avoider for the IARA
autonomous car. In 2016 IEEE 19th International
Conference on Intelligent Transportation Systems
(ITSC) (pp. 1914-1919). IEEE.
Guidolini, R., De Souza, A. F., Mutz, F., and Badue, C.
(2017, May). Neural-based model predictive control
for tackling steering delays of autonomous cars. In
2017 International Joint Conference on Neural
Networks (IJCNN) (pp. 4324-4331). IEEE.
Kicki, P., Gawron, T., and Skrzypczyński, P. (2020). A
Self-Supervised Learning Approach to Rapid Path
Planning for Car-Like Vehicles Maneuvering in Urban
Environment. arXiv preprint arXiv:2003.00946.
Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H.,
Dolgov, D., Ettinger, S., Haehnel, D., Hilden, T.,
Hoffmann, G., Huhnke, B., Johnston, D., Klumpp, S.,
Langer, D., Levandowski, A., Levinson, J., Marcil, J.,
Orenstein, D., Paefgen, J., Penny, I., Petrovskaya, A.,
Pflueger, M., Stanek, G., Stavens, D., Vogt, A., and
Thrun, S. (2008). Junior: The stanford entry in the
urban challenge. Journal of field Robotics, 25(9), 569-
597.
Moraes, G., Mozart, A., Azevedo, P., Piumbini, M.,
Cardoso, V. B., Oliveira-Santos, T., De Souza, A. F.,
and Badue, C. (2020, July). Image-Based Real-Time
Path Generation Using Deep Neural Networks. In
2020 International Joint Conference on Neural
Networks (IJCNN) (pp. 1-8). IEEE.
Mutz, F., Veronese, L. P., Oliveira-Santos, T., de Aguiar,
E., Cheein, F. A. A., and De Souza, A. F. (2016).
Large-scale mapping in complex field scenarios using
an autonomous car. Expert Systems with Applications,
46, 439-462.
Possatti, L. C., Guidolini, R., Cardoso, V. B., Berriel, R.
F., Paixão, T. M., Badue, C., De Souza, A. F., and
Oliveira-Santos, T. (2019, July). Traffic light
recognition using deep learning and prior maps for
autonomous cars. In 2019 International Joint
Conference on Neural Networks (IJCNN) (pp. 1-8).
IEEE.