REFERENCES
Adi, Y., Baum, C., Cisse, M., Pinkas, B., and Keshet, J.
(2018). Turning your weakness into a strength: Wa-
termarking deep neural networks by backdooring. In
27th USENIX Security Symposium, pages 1615–1631.
Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Ed-
wards, B., Lee, T., Molloy, I., and Srivastava, B.
(2018). Detecting backdoor attacks on deep neu-
ral networks by activation clustering. arXiv preprint
arXiv:1811.03728.
Coates, A., Ng, A., and Lee, H. (2011). An analysis of
single-layer networks in unsupervised feature learn-
ing. volume 15 of Proceedings of Machine Learning
Research, pages 215–223.
Cramer, R., Damg
˚
ard, I. B., et al. (2015). Secure multiparty
computation. Cambridge University Press.
Ge, Z., Song, Z., Ding, S. X., and Huang, B. (2017). Data
mining and analytics in the process industry: The role
of machine learning. Ieee Access, 5:20590–20616.
Gentry, C. et al. (2009). A fully homomorphic encryption
scheme, volume 20. Stanford university Stanford.
Gu, T., Liu, K., Dolan-Gavitt, B., and Garg, S. (2019). Bad-
nets: Evaluating backdooring attacks on deep neural
networks. IEEE Access, 7:47230–47244.
Hitaj, D., Hitaj, B., and Mancini, L. V. (2019). Evasion at-
tacks against watermarking techniques found in mlaas
systems. In 2019 Sixth International Conference on
Software Defined Systems (SDS), pages 55–63.
Jia, H., Choquette-Choo, C. A., and Papernot, N. (2020).
Entangled watermarks as a defense against model ex-
traction. arXiv preprint arXiv:2002.12200.
Kahng, A. B., Lach, J., Mangione-Smith, W. H., Mantik,
S., Markov, I. L., Potkonjak, M., Tucker, P., Wang,
H., and Wolfe, G. (1998). Watermarking techniques
for intellectual property protection. In Proceedings
of the 35th annual Design Automation Conference,
pages 776–781.
Kingma, D. P. and Ba, J. (2017). Adam: A method for
stochastic optimization.
Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. (2019).
Similarity of neural network representations revisited.
arXiv preprint arXiv:1905.00414.
Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple
layers of features from tiny images.
LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit
database.
Li, H., Willson, E., Zheng, H., and Zhao, B. Y. (2019).
Persistent and unforgeable watermarks for deep neural
networks. arXiv preprint arXiv:1910.01226.
Ryffel, T., Dufour-Sans, E., Gay, R., Bach, F., and
Pointcheval, D. (2019). Partially encrypted machine
learning using functional encryption. arXiv preprint
arXiv:1905.10214.
Szyller, S., Atli, B. G., Marchal, S., and Asokan, N. (2019).
Dawn: Dynamic adversarial watermarking of neural
networks. arXiv preprint arXiv:1906.00830.
Tram
`
er, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
part, T. (2016). Stealing machine learning models via
prediction apis. In 25th USENIX Security Symposium,
pages 601–618.
Tran, B., Li, J., and Madry, A. (2018). Spectral signatures in
backdoor attacks. In Advances in Neural Information
Processing Systems, pages 8000–8010.
Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng,
H., and Zhao, B. Y. (2019). Neural cleanse: Identi-
fying and mitigating backdoor attacks in neural net-
works. In 2019 IEEE Symposium on Security and Pri-
vacy (SP).
Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint
arXiv:1708.07747.
Yang, J. and Yang, G. (2018). Modified convolutional neu-
ral network based on dropout and the stochastic gradi-
ent descent optimizer. Algorithms.
Zhang, J., Gu, Z., Jang, J., Wu, H., Stoecklin, M. P., Huang,
H., and Molloy, I. (2018). Protecting intellectual prop-
erty of deep neural networks with watermarking. In
Proceedings of the 2018 on Asia Conference on Com-
puter and Communications Security.
Zhu, R., Zhang, X., Shi, M., and Tang, Z. (2020). Secure
neural network watermarking protocol against forging
attack. EURASIP Journal on Image and Video Pro-
cessing, 2020(1):1–12.
SECRYPT 2021 - 18th International Conference on Security and Cryptography
306