M. M. Tadesse, H. Lin, B. Xu and L. Yang, "Detection of
Depression-Related Posts in Reddit Social Media
Forum," in IEEE Access, vol. 7, pp. 44883-44893,
2019, doi: 10.1109/ACCESS.2019.2909180.
A. U. Hassan, J. Hussain, M. Hussain, M. Sadiq and S.
Lee, "Sentiment analysis of social networking sites
(SNS) data using machine learning approach for the
measurement of depression," 2017 International
Conference on Information and Communication
Technology Convergence (ICTC), Jeju, 2017, pp. 138-
140, doi: 10.1109/ICTC.2017.8190959.
Sharath Chandra Guntuku, David B Yaden, Margaret L
Kern, Lyle H Ungar, Johannes C Eichstaedt, Detecting
depression and mental illness on social media: an
integrative review, Current Opinion in Behavioral
Sciences, Volume 18, 2017, Pages 43-49, ISSN 2352-
1546, https://doi.org/10.1016/j.cobeha.2017.07.005.
V. Arun, P. V., M. Krishna, A. B.V., P. S.K. and S. V., "A
Boosted Machine Learning Approach For Detection of
Depression," 2018 IEEE Symposium Series on
Computational Intelligence (SSCI), Bangalore, India,
2018, pp. 41-47, doi: 10.1109/SSCI.2018.8628945.
M. R. H. Khan, U. S. Afroz, A. K. M. Masum, S. Abujar
and S. A. Hossain, "Sentiment Analysis from Bengali
Depression Dataset using Machine Learning," 2020
11th International Conference on Computing,
Communication and Networking Technologies
(ICCCNT), Kharagpur, India, 2020, pp. 1-5, doi:
10.1109/ICCCNT49239.2020.9225511.
arXiv:1607.07384v1 [cs.SI]
S. Jain, S. P. Narayan, R. K. Dewang, U. Bhartiya, N.
Meena and V. Kumar, "A Machine Learning based
Depression Analysis and Suicidal Ideation Detection
System using Questionnaires and Twitter," 2019 IEEE
Students Conference on Engineering and Systems
(SCES), Allahabad, India, 2019, pp. 1-6, doi:
10.1109/SCES46477.2019.8977211.
N. A. Asad, M. A. Mahmud Pranto, S. Afreen and M. M.
Islam, "Depression Detection by Analyzing Social
Media Posts of User," 2019 IEEE International
Conference on Signal Procesing, Information,
Communication & Systems (SPICSCON), Dhaka,
Bangladesh, 2019, pp. 13-doi:
10.1109/SPICSCON48833.2019.9065101.
arXiv:1805.11869v1 [cs.CL]
E. Lunando and A. Purwarianti, "Indonesian social media
sentiment analysis with sarcasm detection," 2013
International Conference on Advanced Computer
Science and Information Systems (ICACSIS), Bali,
2013, pp. 195-198, doi:
10.1109/ICACSIS.2013.6761575.
Mondher Bouazizi and TomoakiOhtsuki. 2015. Opinion
Mining in Twitter How to Make Use of Sarcasm to
Enhance Sentiment Analysis. In Proceedings of the
2015 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining
2015 (ASONAM '15). Association for Computing
Machinery, New York, NY, USA, 1594β1597.
DOI:https://doi.org/10.1145/2808797.2809350
K. Parmar, N. Limbasiya and M. Dhamecha, "Feature
based Composite Approach for Sarcasm Detection
using MapReduce," 2018 Second International
Conference on Computing Methodologies and
Communication (ICCMC), Erode, 2018, pp. 587-591,
doi: 10.1109/ICCMC.2018.8488096.
Liparas D., HaCohen-Kerner Y., Moumtzidou A.,
Vrochidis S., Kompatsiaris I. (2014) News Articles
Classification Using Random Forests and Weighted
Multimodal Features. In: Lamas D., Buitelaar P. (eds)
Multidisciplinary Information Retrieval. IRFC 2014.
Lecture Notes in Computer Science, vol 8849.
Springer, Cham. https://doi.org/10.1007/978-3-319-
12979-2_6
I. Hussain, O. Ormandjieva and L. Kosseim, "Automatic
Quality Assessment of SRS Text by Means of a
Decision-Tree-Based Text Classifier," Seventh
International Conference on Quality Software (QSIC
2007), Portland, OR, 2007, pp. 209-218, doi:
10.1109/QSIC.2007.4385497.
Desjarlais, Robert R. World mental health: Problems and
priorities in low-income countries. Oxford University
Press, USA, 1995.
Murray, C. J., Lopez, A. D., & World Health
Organization. (1996). The global burden of disease: a
comprehensive assessment of mortality and disability
from diseases, injuries, and risk factors in 1990 and
projected to 2020: summary. World Health
Organization.
P. V. Narayanrao and P. Lalitha Surya Kumari, "Analysis
of Machine Learning Algorithms for Predicting
Depression," 2020 International Conference on
Computer Science, Engineering and Applications
(ICCSEA), Gunupur, India, 2020, pp. 1-4, doi:
10.1109/ICCSEA49143.2020.9132963.
Islam, M.R., Kabir, M.A., Ahmed, A. et al. Depression
detection from social network data using machine
learning techniques. Health Inf Sci Syst 6, 8 (2018).
GonzΓ‘lez-IbΓ‘nez, Roberto, Smaranda Muresan, and Nina
Wacholder. "Identifying sarcasm in Twitter: a closer
look." Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. 2011.
Alsaleem, S., 2011. Automated Arabic Text
Categorization Using SVM and NB. Int. Arab. J. e
Technol., 2(2), pp.124-128.
M. Bouazizi, T. OtsukiOhtsuki. A Pattern-Based
Approach for Sarcasm Detection on Twitter. In IEEE
Access, vol. 4, pp. 5477-5488, 2016.
Tom'asPt'acek, Ivan Habernal, Jun Hong, Tom'asHercig.
Sarcasm Detection on Czech and English Twitter. In
COLING (2014).
David Bamman, Noah Smith. Contextualized Sarcasm
Detection on Twitter. In International AAAI
Conference on Web and Social Media (2015).