Conference on Intelligent Systems and Control
(ISCO).
Kartik Dutta, Praveen Krishnan, Minesh Mathew, and CV
Jawahar (2018). Improving CNN-RNN Hybrid
Networks for Handwriting Recognition. International
Conference on Frontiers in Handwriting Recognition.
Khaoula E., C. Garcia,& Pascale S.(2011).Comprehensive
Neural- Based Approach for Text Recognition in
Videos using Natural Language Processing.ICMR.
Lei Tang, Suju R., & Vijay K. N.(2009).Large Scale
Multi-Label Classification via MetaLabeler.
Louradour, J., &Kermorvant, C. (2014, April). Curriculum
learning for handwritten text line recognition. In 2014
11th IAPR International Workshop on Document
Analysis Systems (pp. 56-60). IEEE.
Manoj Sonkusare and Narendra Sahu (2016). A Survey
On Handwritten Character Recognition (HCR)
Techniques For English Alphabets.Advances in Vision
Computing: An International Journal (AVC) Vol.3,
No.1.
MarouaTounsi, IkramMoalla, Adel M Alimi (2016).
Supervised Dictionary Learning in BoF Framework
for Scene Character Recognition. 23rd International
Conference on Pattern Recognition (ICPR).
MarouaTounsi, IkramMoalla, Frank Lebourgeois, Adel M
Alimi(2018). Multilingual Scene Character
Recognition System using Sparse Auto-Encoder for
Efficient Local Features Representation in Bag of
Features.
Michael, J., Labahn, R., Grüning, T., &Zöllner, J. (2019).
Evaluating Sequence-to-Sequence Models for
Handwritten Text Recognition. arXiv preprint
arXiv:1903.07377.
Minghui L., Baoguang S., Xiang Bai, Xinggang W.,
&WenyuL.(2017), ”TextBoxes: A Fast Text Detector
with a Single Deep Neural Network”, AAAI
Conference on Artificial Intelligence.
Moysset, B., & Messina, R. (2019). Manifold Mixup
improves text recognition with CTC loss. arXiv
preprint arXiv:1903.04246.
NalKalchbrenner, Edward Grefenstette, and Phil Blunsom
(2014). A convolutional neural network for modelling
sentences. In Proceedings of ACL.
Nam-Tuan Ly, Cuong-Tuan Nguyen, Kha-Cong Nguyen,
& Masaki N.(2017). Deep Convolutional Recurrent
Network for Segmentation-free Offline Handwritten
Japanese Text Recognition. IAPR (ICDAR) (vol-7).
P. Doetsch, A. Zeyer, and H. Ney (2016). Bidirectional
decoder networks for attention-based end-to-end
offline handwriting recognition,” International
Conference on Frontiers in Handwriting Recognition,
pp. 361–366.
P. Voigtlaender, P. Doetsch, and H. Ney (2016).
Handwriting recognition with large multidimensional
long short-term memory recurrent neural networks.
ICFHR.
Polaiah B., Naga s., Gautham K. P., and S D Lalitha Rao
Sharma Polavarapu (2019). Handwritten Text
Recognition using Machine Learning Techniques in
Application of NLP.(IJITEE) ISSN: 2278-3075,
Volume-9 Issue-2.
Poulos, J., & Valle, R.(2019). Character-Based
Handwritten Text Transcription with Attention
Networks.
Praveen Krishnan, and CV Jawahar (2016).Generating
Synthetic Data for Text Recognition.
Praveen Krishnan, Kartik Dutta, and CV Jawahar (2016).
Deep eature Embedding for Accurate Recognition and
Retrieval of Handwritten Text. International
Conference on Frontiers in Handwriting Recognition.
Praveen Krishnan, Kartik Dutta, and CV Jawahar
(2018).Word Spotting and Recognition using Deep
Embedding. Document Analysis Systems.
Puigcerver, J. (2017). Are multidimensional recurrent
layers really necessary for handwritten text
recognition? In 2017 14th IAPR International
Conference on Document Analysis and Recognition
(ICDAR) (Vol. 1, pp. 67-72). IEEE.
S. Hochreiter and J. Schmidhuber (1997). Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp.
1735–1780..
Saumya J., KapilMehrotra, AtishVaze, &SwapnilBelhe
(2014). Multi-script Identication from Printed Words.
International Conference Image Analysis and
Recognition.
Shangbang Long, and Cong Yao(2020). UnrealText:
Synthesizing Realistic Scene Text Images from the
UnrealWorld. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition(pages. 5488-5497).
Shangbang Long, JiaqiangRuan, Wenjie Zhang, Xin He,
Wenhao Wu, and Cong Yao(2018). TextSnake: A
Flexible Representation for Detecting Text of
Arbitrary Shapes.
Sheng Zhang, Yuliang Liu, LianwenJin, Canjie Luo
(2018). Feature Enhancement Network: A Refined
Scene Text Detector. AAAI Conference on Artificial
Intelligence(vol-32).
Siddhant Bansal, Praveen Krishnan, and CV
Jawahar(2020). Fused Text Recogniser and Deep
Embeddings Improve Word Recognition and
Retrieval. International Workshop on Document
Analysis Systems. Springer, Cham (Pp.309-323).
SwapnilBelhe, Chetan P., Akash D., Saumya J.,
&KapilM.(2016).Hindi Handwritten Word
Recognition using HMM and Symbol Tree. Workshop
on Document Analysis and Recognition.
Vu Pham, T. Bluche, Christopher K.,& J. Louradour
(2014). Dropout improves Recurrent Neural Networks
for Handwriting Recognition. arXiv:1312.4569v2
[cs.CV].
Weixin Y., Lianwen J., ZechengXie, &ZiyongFeng(2015).
Improved Deep Convolutional Neural Network For
Online Handwritten Chinese Character Recognition
using Domain-Specific Knowledge.(ICDAR), IEEE.
Wenniger, G. M. D. B., Schomaker, L., & Way, A. (2019).
No Padding Please: Efficient Neural Handwriting
Recognition. arXiv preprint arXiv:1902.11208.