Alzheimer’s and Parkinson’s disease. Procedia
Computer Science, 115, 188-194.
Vieira, S., Pinaya, W. H., & Mechelli, A. (2017). Using
deep learning to investigate the neuroimaging
correlates of psychiatric and neurological disorders:
Methods and applications. Neuroscience &
Biobehavioral Reviews, 74, 58-75.
Noor, M. B. T., Zenia, N. Z., Kaiser, M. S., Al Mamun, S.,
& Mahmud, M. (2020). Application of deep learning
in detecting neurological disorders from magnetic
resonance images: a survey on the detection of
Alzheimer’s disease, Parkinson’s disease and
schizophrenia. Brain informatics, 7(1), 1-21.
Pinaya, W. H., Gadelha, A., Doyle, O. M., Noto, C.,
Zugman, A., Cordeiro, Q., ... & Sato, J. R. (2016).
Using deep belief network modelling to characterize
differences in brain morphometry in schizophrenia.
Scientific reports, 6(1), 1-9.
Payan, A., & Montana, G. (2015). Predicting Alzheimer's
disease: a neuroimaging study with 3D convolutional
neural networks. arXiv preprint arXiv:1502.02506.
Aoe, J., Fukuma, R., Yanagisawa, T., Harada, T., Tanaka,
M., Kobayashi, M., ... & Kishima, H. (2019).
Automatic diagnosis of neurological diseases using
MEG signals with a deep neural network. Scientific
reports, 9(1), 1-9.
Lin, E., Kuo, P. H., Liu, Y. L., Yu, Y. W. Y., Yang, A. C.,
& Tsai, S. J. (2018). A deep learning approach for
predicting antidepressant response in major depression
using clinical and genetic biomarkers. Frontiers in
psychiatry, 9, 290.
Suk, H. I., & Shen, D. (2013, September). Deep learning-
based feature representation for AD/MCI
classification. In International Conference on Medical
Image Computing and Computer-Assisted
Intervention (pp. 583-590). Springer, Berlin,
Heidelberg.
Daoud, H., & Bayoumi, M. A. (2019). Efficient epileptic
seizure prediction based on deep learning. IEEE
transactions on biomedical circuits and systems, 13(5),
804-813.
Du, Y., Fu, Z., & Calhoun, V. D. (2018). Classification
and prediction of brain disorders using functional
connectivity: promising but challenging. Frontiers in
neuroscience, 12, 525.
Filippone, M., Marquand, A. F., Blain, C. R., Williams, S.
C., Mourão-Miranda, J., & Girolami, M. (2012).
Probabilistic prediction of neurological disorders with
a statistical assessment of neuroimaging data
modalities. The annals of applied statistics, 6(4), 1883.
Filippone, M., Marquand, A. F., Blain, C. R., Williams, S.
C., Mourão-Miranda, J., & Girolami, M. (2012).
Probabilistic prediction of neurological disorders with
a statistical assessment of neuroimaging data
modalities. The annals of applied statistics, 6(4), 1883.
Gautam, R., & Sharma, M. (2020). Prevalence and
diagnosis of neurological disorders using different
deep learning techniques: a meta-analysis. Journal of
medical systems, 44(2), 1-24.
Hosseini, M. P., Soltanian-Zadeh, H., Elisevich, K., &
Pompili, D. (2016, December). Cloud-based deep
learning of big EEG data for epileptic seizure
prediction. In 2016 IEEE global conference on signal
and information processing (GlobalSIP) (pp. 1151-
1155). IEEE.
Jónsson, B. A., Bjornsdottir, G., Thorgeirsson, T. E.,
Ellingsen, L. M., Walters, G. B., Gudbjartsson, D. F.,
... & Ulfarsson, M. O. (2019). Brain age prediction
using deep learning uncovers associated sequence
variants. Nature communications, 10(1), 1-10.
Kaur, H., Malhi, A. K., & Pannu, H. S. (2020). Machine
learning ensemble for neurological disorders. Neural
Computing and Applications, 1-18.
Kshirsagar, P. R., Akojwar, S. G., & Bajaj, N. D. (2018).
A hybridised neural network and optimisation
algorithms for prediction and classification of
neurological disorders. International Journal of
Biomedical Engineering and Technology, 28(4), 307-
321..
Valliani, A. A. A., Ranti, D., & Oermann, E. K. (2019).
Deep learning and neurology: a systematic review.
Neurology and therapy, 8(2), 351-365.
WHO | Neurological Disorders: Public Health Challenges,
WHO, 2012.