to increase the accuracy of recommending items to
users. It also integrates data from multiple sources to
extract the preferences of users.
REFERENCES
Çano, E., Analysis, M. M.-I. D., & 2017, undefined. (n.d.).
Hybrid recommender systems: A systematic literature
review. Content.Iospress.Com. Retrieved January 19,
2022, from
https://content.iospress.com/articles/intelligent-data-
analysis/ida163209
Deng, S., Huang, L., Xu, G., … X. W.-I. transactions on, &
2016, undefined. (n.d.). On deep learning for trust-
aware recommendations in social networks.
Ieeexplore.Ieee.Org. Retrieved January 19, 2022, from
https://ieeexplore.ieee.org/abstract/document/7414528/
Gantz, J., future, D. R.-I. iView: I. A. the, & 2012,
undefined. (2012). The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the
far east. Speicherguide.De.
https://www.speicherguide.de/download/dokus/IDC-
Digital-Universe-Studie-iView-11.12.pdf
Liang, N., Zheng, H. T., Chen, J. Y., Sangaiah, A. K., &
Zhao, C. Z. (2018). TRSDL: Tag-Aware Recommender
System Based on Deep Learning–Intelligent
Computing Systems. Applied Sciences 2018, Vol. 8,
Page 799, 8(5), 799.
https://doi.org/10.3390/APP8050799
Lops, P., Gemmis, M. De, handbook, G. S.-R. systems, &
2011, undefined. (2011). Content-based recommender
systems: State of the art and trends. Springer, 73–105.
https://doi.org/10.1007/978-0-387-85820-3_3
Meteren, R. Van, … M. V. S. in the new information, &
2000, undefined. (n.d.). Using content-based filtering
for recommendation. Users.Ics.Forth.Gr. Retrieved
January 19, 2022, from
http://users.ics.forth.gr/~potamias/mlnia/paper_6.pdf
Park, D., Kim, H., Choi, I., applications, J. K.-E. systems
with, & 2012, undefined. (n.d.). A literature review and
classification of recommender systems research.
Elsevier. Retrieved January 19, 2022, from
https://www.sciencedirect.com/science/article/pii/S095
7417412002825
Salakhutdinov, R., Mnih, A., & Hinton, G. (2007).
Restricted Boltzmann machines for collaborative
filtering. ACM International Conference Proceeding
Series, 227, 791–798.
https://doi.org/10.1145/1273496.1273596
Sedhain, S., Menon, A., Sanner, S., … L. X.-24th
international conference, & 2015, undefined. (2015).
Autorec: Autoencoders meet collaborative filtering.
Dl.Acm.Org, 111–112.
https://doi.org/10.1145/2740908.2742726
September, L. Z., & 2016, undefined. (2016). A survey and
critique of deep learning on recommender systems.
Bdsc.Lab.Uic.Edu.
https://bdsc.lab.uic.edu/docs/survey-critique-deep.pdf
Strub, F., eCommerce, J. M.-N. workshop on machine
learning for, & 2015, undefined. (n.d.). Collaborative
filtering with stacked denoising autoencoders and
sparse inputs. Hal.Inria.Fr. Retrieved January 19,
2022, from https://hal.inria.fr/hal-01256422/
Tran, T., Markets, R. C.-P. K.-B. E., Papers, undefined, &
2000, undefined. (2000). Hybrid recommender systems
for electronic commerce. Aaai.Org.
https://www.aaai.org/Papers/Workshops/2000/WS-00-
04/WS00-04-012.pdf
Wang, H., Wang, N., … D. Y.-A. S. international
conference, & 2015, undefined. (2015). Collaborative
deep learning for recommender systems. Dl.Acm.Org,
2015-August, 1235–1244.
https://doi.org/10.1145/2783258.2783273
Wang, J., Yu, L., Zhang, W., Gong, Y., Xu, Y., Wang, B.,
Zhang, P., & Zhang, D. (2017). IRGAN: A minimax
game for unifying generative and discriminative
information retrieval models. SIGIR 2017 -
Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in
Information Retrieval, 515–524.
https://doi.org/10.1145/3077136.3080786
Wu, C., Wang, J., Liu, J., Systems, W. L.-K.-B., & 2016,
undefined. (n.d.). Recurrent neural network based
recommendation for time heterogeneous feedback.
Elsevier. Retrieved January 19, 2022, from
https://www.sciencedirect.com/science/article/pii/S095
070511630199X
Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep
learning based recommender system: A survey and new
perspectives. In ACM Computing Surveys (Vol. 52,
Issue 1). Association for Computing Machinery.
https://doi.org/10.1145/3285029