risk: a machine learning approach. SN Applied
Sciences, 1(9), 1112.
Bora, A., Balasubramanian, S., Babenko, B., Virmani, S.,
Venugopalan, S., Mitani, A., ... &Bavishi, P. (2021).
Predicting the risk of developing diabetic retinopathy
using deep learning. The Lancet Digital Health, 3(1),
e10-e19.
Bottou, L. (2014). From machine learning to machine
reasoning. Machine learning, 94(2), 133-149.
Chen, P., & Pan, C. (2018). Diabetes classification model
based on boosting algorithms. BMC
bioinformatics, 19(1), 109.
Choi, S. B., Kim, W. J., Yoo, T. K., Park, J. S., Chung, J.
W., Lee, Y. H., ... & Kim, D. W. (2014). Screening for
prediabetes using machine learning
models. Computational and mathematical methods in
medicine, 2014.
Dagliati, A., Marini, S., Sacchi, L., Cogni, G., Teliti, M.,
Tibollo, V., ... &Bellazzi, R. (2018). Machine learning
methods to predict diabetes complications. Journal of
diabetes science and technology, 12(2), 295-302.
Ding, S., Zhao, H., Zhang, Y., Xu, X., &Nie, R. (2015).
Extreme learning machine: algorithm, theory and
applications. Artificial Intelligence Review, 44(1),
103-115.
Donsa, K., Spat, S., Beck, P., Pieber, T. R., &Holzinger, A.
(2015). Towards personalization of diabetes therapy
using computerized decision support and machine
learning: some open problems and challenges.
In Smart Health (pp. 237-260). Springer, Cham.
Durairaj, M., &Kalaiselvi, G. (2015). Prediction of
diabetes using back propagation
algorithm. International Journal of Emerging
Technology and Innovative Engineering, 1(8).
Dwivedi, A. K. (2018). Analysis of computational
intelligence techniques for diabetes mellitus
prediction. Neural Computing and
Applications, 30(12), 3837-3845.
Fitriyani, N. L., Syafrudin, M., Alfian, G., & Rhee, J.
(2019). Development of disease prediction model
based on ensemble learning approach for diabetes and
hypertension. IEEE Access, 7, 144777-144789.
Georga, E. I., Protopappas, V. C., Mougiakakou, S. G., &
Fotiadis, D. I. (2013, November). Short-term vs. long-
term analysis of diabetes data: Application of machine
learning and data mining techniques. In 13th IEEE
International Conference on BioInformatics and
BioEngineering (pp. 1-4). IEEE.
Han, J., Rodriguez, J. C., &Beheshti, M. (2008,
December). Diabetes data analysis and prediction
model discovery using rapidminer. In 2008 Second
international conference on future generation
communication and networking (Vol. 3, pp. 96-99).
IEEE.
Han, L., Luo, S., Yu, J., Pan, L., & Chen, S. (2014). Rule
extraction from support vector machines using
ensemble learning approach: an application for
diagnosis of diabetes. IEEE journal of biomedical and
health informatics, 19(2), 728-734.
Hasan, M. K., Alam, M. A., Das, D., Hossain, E., &Hasan,
M. (2020). Diabetes prediction using ensembling of
different machine learning classifiers. IEEE Access, 8,
76516-76531.
https://www.kaggle.com/uciml/pima-indians-diabetes-
database
Jankovic, M. V., Mosimann, S., Bally, L., Stettler, C.,
&Mougiakakou, S. (2016, November). Deep
prediction model: The case of online adaptive
prediction of subcutaneous glucose. In 2016 13th
Symposium on Neural Networks and Applications
(NEUREL) (pp. 1-5). IEEE.
Karthikeyan, R., Geetha, P., &Ramaraj, E. (2019,
February). Rule Based System for Better Prediction of
Diabetes. In 2019 3rd International Conference on
Computing and Communications Technologies
(ICCCT) (pp. 195-203). IEEE.
Kaur, H., &Kumari, V. (2020). Predictive modelling and
analytics for diabetes using a machine learning
approach. Applied computing and informatics.
Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N.,
Vlahavas, I., &Chouvarda, I. (2017). Machine learning
and data mining methods in diabetes
research. Computational and structural biotechnology
journal, 15, 104-116.
Kerner, W., &Brückel, J. (2014). Definition, classification
and diagnosis of diabetes mellitus. Experimental and
clinical endocrinology & diabetes, 122(07), 384-386.
Kohli, P. S., &Arora, S. (2018, December). Application of
machine learning in disease prediction. In 2018 4th
International Conference on Computing
Communication and Automation (ICCCA) (pp. 1-4).
IEEE.
Kowsher, M., Turaba, M. Y., Sajed, T., &Rahman, M. M.
(2019, December). Prognosis and Treatment
Prediction of Type-2 Diabetes Using Deep Neural
Network and Machine Learning Classifiers. In 2019
22nd International Conference on Computer and
Information Technology (ICCIT) (pp. 1-6). IEEE.
Liao, Y., &Vemuri, V. R. (2002). Use of k-nearest
neighbor classifier for intrusion detection. Computers
& security, 21(5), 439-448.
Maniruzzaman, M., Kumar, N., Abedin, M. M., Islam, M.
S., Suri, H. S., El-Baz, A. S., &Suri, J. S. (2017).
Comparative approaches for classification of diabetes
mellitus data: Machine learning paradigm. Computer
methods and programs in biomedicine, 152, 23-34.
Maniruzzaman, M., Rahman, M. J., Ahammed, B.,
&Abedin, M. M. (2020). Classification and prediction
of diabetes disease using machine learning
paradigm. Health Information Science and
Systems, 8(1), 7.
Mercaldo, F., Nardone, V., &Santone, A. (2017). Diabetes
mellitus affected patients classification and diagnosis
through machine learning techniques. Procedia
computer science, 112, 2519-2528.
Mhaskar, H. N., Pereverzyev, S. V., & van der Walt, M. D.
(2017). A deep learning approach to diabetic blood
glucose prediction. Frontiers in Applied Mathematics
and Statistics, 3, 14.