structed matrix-valued function truly is a contraction
metric.
In this paper it was shown, both in theory and ex-
amples, that the contraction metric has the advantage
of being robust with respect to small perturbations in
the system, even those which vary the position of the
periodic orbit.
When compared to other methods to determine the
basin of attraction of an exponentially stable periodic
orbit, e.g. Lyapunov functions, the computation of a
contraction metric is computationally more demand-
ing as we construct a matrix-valued function. The ad-
vantage is, however, that we do not need the location
of the periodic orbit and that the metric is robust with
respect to perturbations of the system.
REFERENCES
Angeli, D. (2002). A Lyapunov approach to incremen-
tal stability properties. IEEE Trans. Automat. Contr.,
47(3):410–421.
Borg, G. (1960). A condition for the existence of orbitally
stable solutions of dynamical systems, volume 153.
Elander.
Demidovi
ˇ
c, B. P. (1961). On the dissipativity of a certain
non-linear system of differential equations. I. Vestnik
Moskov. Univ. Ser. I Mat. Meh., 1961(6):19–27.
Demidovi
ˇ
c, B. P. (1967). Lekcii po matematiq-
esko˘i teorii usto˘i qivosti. Izdat. “Nauka”,
Moscow.
Forni, F. and Sepulchre, R. (2014). A differential Lyapunov
framework for Contraction Analysis. IEEE Transac-
tions on Automatic Control, 59(3):614–628.
Fromion, V. and Scorletti, G. (2005). Connecting nonlinear
incremental Lyapunov stability with the linearizations
Lyapunov stability. In Proc. 44th IEEE Conf. Decis.
Control, pages 4736–4741.
Giesl, P. (2019). Computation of a contraction metric for
a periodic orbit using meshfree collocation. SIAM J.
Appl. Dyn. Syst., 18(3):1536–1564.
Giesl, P. (2020). On a matrix-valued PDE characterizing a
contraction metric for a periodic orbit. Discrete Con-
tin. Dyn. Syst. Ser. B, accepted.
Giesl, P. and Hafstein, S. (2013). Construction of a CPA
contraction metric for periodic orbits using semidefi-
nite optimization. Nonlinear Anal., 86:114–134.
Giesl, P. and Hafstein, S. (2015). Computation and verifica-
tion of Lyapunov functions. SIAM J. Appl. Dyn. Syst.,
14(4):1663–1698.
Giesl, P., Hafstein, S., and Mehrabinezhad, I. (2021a).
Computation and verification of contraction metrics
for exponentially stable equilibria. J. Comput. Appl.
Math., accepted.
Giesl, P., Hafstein, S., and Mehrabinezhad, I. (2021b).
Computation and verification of contraction metrics
for periodic orbits. J. Math. Anal. Appl., accepted.
Hartman, P. (1964). Ordinary Differential Equations. Wi-
ley, New York.
Hartman, P. and Olech, C. (1962). On global asymptotic
stability of solutions of differential equations. Trans.
Amer. Math. Soc., 104:154–178.
Hauser, J. and Chung, C. C. (1994). Converse Lyapunov
functions for exponentially stable periodic orbits. Sys-
tems Control Lett., 23(1):27–34.
Iske, A. (1998). Perfect centre placement for radial ba-
sis function methods. Technical Report TUM-M9809,
TU Munich, Germany.
Jouffroy, J. (2005). Some ancestors of contraction analysis.
In 44th IEEE Conference on Decision and Control,
page 5450. IEEE.
Krasovski
˘
i, N. N. (1963). Problems of the Theory of Stabil-
ity of Motion. Mir, Moskow, 1959. English translation
by Stanford University Press.
Kravchuk, A. Y., Leonov, G. A., and Ponomarenko, D. V.
(1992). A criterion for the strong orbital stability of
the trajectories of dynamical systems I. Diff. Uravn.,
28:1507–1520.
Leonov, G., Noack, A., and Reitmann, V. (2001). Asymp-
totic orbital stability conditions for flows by estimates
of singular values of the linearization. Nonlinear
Anal., 44(8):1057–1085.
Leonov, G. A. (2006). Generalization of the Andronov-Vitt
theorem. Regul. Chaotic Dyn., 11(2):281–289.
Leonov, G. A., Burkin, I. M., and Shepelyavyi, A. I. (1996).
Frequency Methods in Oscillation Theory. Ser. Math.
and its Appl.: Vol. 357, Kluwer.
Lewis, D. C. (1949). Metric properties of differential equa-
tions. American Journal of Mathematics, 71(2):294–
312.
Lohmiller, W. and Slotine, J.-J. (1998). On Contrac-
tion Analysis for Non-linear Systems. Automatica,
34:683–696.
Manchester, I. R. and Slotine, J.-J. E. (2014). Transverse
contraction criteria for existence, stability, and robust-
ness of a limit cycle. Systems Control Lett., 63:32–38.
Opial, Z. (1960). Sur la stabilit
´
e asymptotique des solutions
d’un syst
`
eme d’
´
equations diff
´
erentielles. Ann. Polon.
Math., 7(3):259–267.
R
¨
uffer, B., van de Wouw, N., and Mueller, M. (2013). Con-
vergent system vs. incremental stability. Systems Con-
trol Lett., 62(3):277–285.
Stenstr
¨
om, B. (1962). Dynamical systems with a certain
local contraction property. Math. Scand., 11:151–155.
Walter, W. (1998). Ordinary Differential Equation.
Springer.
Yang, X. (2001). Remarks on three types of asymptotic
stability. Systems Control Lett., 42:299–302.
Robustness of Contraction Metrics Computed by Radial Basis Functions
599