would also like to create and evaluate localization ap-
proaches based on CNNs in outdoor environments.
ACKNOWLEDGEMENTS
This work has been supported by the General-
itat Valenciana and the FSE through the grant
ACIF/2020/141 and the project AICO/2019/031:
“Creaci
´
on de modelos jer
´
arquicos y localizaci
´
on ro-
busta de robots m
´
oviles en entornos sociales”; and
by the Spanish government through the project DPI
2016-78361-R (AEI/FEDER, UE): “Creaci
´
on de ma-
pas mediante m
´
etodos de apariencia visual para la
navegaci
´
on de robots”.
REFERENCES
Arroyo, R., Alcantarilla, P. F., Bergasa, L. M., and Romera,
E. (2016). Fusion and binarization of cnn features
for robust topological localization across seasons. In
2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 4656–4663.
Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. Journal of machine
learning research, 13(Feb):281–305.
Bergstra, J., Yamins, D., and Cox, D. D. (2013). Mak-
ing a science of model search: Hyperparameter op-
timization in hundreds of dimensions for vision archi-
tectures.
Cebollada, S., Pay
´
a, L., Flores, M., Peidr
´
o, A., and Reinoso,
O. (2021). A state-of-the-art review on mobile
robotics tasks using artificial intelligence and visual
data. Expert Systems with Applications, 167:114195.
Cebollada, S., Pay
´
a, L., Flores, M., Rom
´
an, V., Peidr
´
o,
A., and Reinoso, O. (2020). A deep learning tool
to solve localization in mobile autonomous robotics.
In ICINCO 2020, 17th International Conference on
Informatics in Control, Automation and Robotics
(Lieusaint-Paris, France, 7-9 July, 2020). Ed. IN-
STICC.
Cebollada, S., Pay
´
a, L., Rom
´
an, V., and Reinoso, O. (2019).
Hierarchical localization in topological models under
varying illumination using holistic visual descriptors.
IEEE Access, 7:49580–49595.
Chaves, D., Ruiz-Sarmiento, J., Petkov, N., and Gonzalez-
Jimenez, J. (2019). Integration of cnn into a robotic
architecture to build semantic maps of indoor environ-
ments. In International Work-Conference on Artificial
Neural Networks, pages 313–324. Springer.
Ding, J., Chen, B., Liu, H., and Huang, M. (2016). Con-
volutional neural network with data augmentation for
sar target recognition. IEEE Geoscience and remote
sensing letters, 13(3):364–368.
Domhan, T., Springenberg, J. T., and Hutter, F. (2015).
Speeding up automatic hyperparameter optimization
of deep neural networks by extrapolation of learning
curves. In Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence.
Dymczyk, M., Gilitschenski, I., Nieto, J., Lynen, S., Zeisl,
B., and Siegwart, R. (2018). Landmarkboost: Effi-
cient visualcontext classifiers for robust localization.
In 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 677–684.
Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust
and efficient hyperparameter optimization at scale.
arXiv preprint arXiv:1807.01774.
Feurer, M. and Hutter, F. (2019). Hyperparameter optimiza-
tion. In Automated Machine Learning, pages 3–33.
Springer.
Han, D., Liu, Q., and Fan, W. (2018). A new image clas-
sification method using cnn transfer learning and web
data augmentation. Expert Systems with Applications,
95:43–56.
Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., and
Leyton-Brown, K. (2019). Auto-weka: Automatic
model selection and hyperparameter optimization in.
Automated Machine Learning: Methods, Systems,
Challenges, page 81.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen,
D. (2018). Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data col-
lection. The International Journal of Robotics Re-
search, 37(4-5):421–436.
Pay
´
a, L., Peidr
´
o, A., Amor
´
os, F., Valiente, D., and Reinoso,
O. (2018). Modeling environments hierarchically with
omnidirectional imaging and global-appearance de-
scriptors. Remote Sensing, 10(4):522.
Pronobis, A. and Caputo, B. (2009). COLD: COsy Lo-
calization Database. The International Journal of
Robotics Research (IJRR), 28(5):588–594.
Salamon, J. and Bello, J. P. (2017). Deep convolutional neu-
ral networks and data augmentation for environmental
sound classification. IEEE Signal Processing Letters,
24(3):279–283.
Shvets, A. A., Rakhlin, A., Kalinin, A. A., and Iglovikov,
V. I. (2018). Automatic instrument segmentation
in robot-assisted surgery using deep learning. In
2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 624–628.
Sinha, H., Patrikar, J., Dhekane, E. G., Pandey, G., and
Kothari, M. (2018). Convolutional neural network
based sensors for mobile robot relocalization. In 2018
23rd International Conference on Methods Models in
Automation Robotics (MMAR), pages 774–779.
Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N.,
Sundaram, N., Patwary, M., Prabhat, M., and Adams,
R. (2015). Scalable bayesian optimization using deep
neural networks. In International conference on ma-
chine learning, pages 2171–2180.
Wozniak, P., Afrisal, H., Esparza, R. G., and Kwolek, B.
(2018). Scene recognition for indoor localization of
mobile robots using deep cnn. In International Con-
ference on Computer Vision and Graphics, pages 137–
147. Springer.
ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics
310