Comparison of Different Radial Basis Functions in Dynamical Systems
Carlos Argáez, Peter Giesl, Sigurdur Hafstein
2021
Abstract
In this paper we study the impact of using different radial basis functions for the computation of complete Lyapunov function candidates using generalised interpolation. We compare the numerical well-posedness of the discretised problem, condition numbers of the collocation matrices, and the quality of the solutions for Wendland functions ψ3,1 and ψ5,3, Gaussians, Inverse quadratics and Inverse multiquadrics, and Matérn kernels ψ(n+3)/2 and ψ(n+5)/2.
DownloadPaper Citation
in Harvard Style
Argáez C., Giesl P. and Hafstein S. (2021). Comparison of Different Radial Basis Functions in Dynamical Systems. In Proceedings of the 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-528-9, pages 394-405. DOI: 10.5220/0010575203940405
in Bibtex Style
@conference{simultech21,
author={Carlos Argáez and Peter Giesl and Sigurdur Hafstein},
title={Comparison of Different Radial Basis Functions in Dynamical Systems},
booktitle={Proceedings of the 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2021},
pages={394-405},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010575203940405},
isbn={978-989-758-528-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Comparison of Different Radial Basis Functions in Dynamical Systems
SN - 978-989-758-528-9
AU - Argáez C.
AU - Giesl P.
AU - Hafstein S.
PY - 2021
SP - 394
EP - 405
DO - 10.5220/0010575203940405